Skip to main content
Log in

Conversion of Biomass-Derived 2-Hexanol to Liquid Transportation Fuels: Study of the Reaction Mechanism on Cu–Mg–Al Mixed Oxides

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The reaction mechanism of 2-hexanol conversion to high molecular weight compounds to be used as liquid transportation fuels was studied on MgO, Cu/SiO2 and a bifunctional Cu–Mg–Al mixed oxide with 8 wt% Cu (catalyst 8.0CuMgAl). Catalysts were characterized by several physical and spectroscopic techniques. The evolution of 2-hexanol conversion and yields in inert (N2) and reducing (H2) reaction atmospheres at different contact times (W/F0) was investigated, which allowed distinguishing between primary and secondary products. In H2, at W/F0 = 500 g h/mol, the bifunctional 8.0CuMgAl catalyst yielded more than 90 % of branched C9–C24 oxygenates and hydrocarbons that were obtained via sequential steps comprising dehydrogenation, C–C coupling, dehydration and hydrogenation reactions. The metal-base bifunctional nature of this reaction network on 8.0CuMgAl was elucidated: nano-sized Cu0 particles promote dehydrogenation and hydrogenation steps whereas Mg–O pairs participate mainly in C–C coupling reactions. The product distribution depended on the reaction atmosphere. In H2, the reaction pathways leading to formation of even carbon atom number products (C12, C18 and C24) were favored and hydrocarbons were the main products at high conversion levels. In N2, significant amounts of odd carbon atom number products (C9, C15 and C21) were formed with a higher contribution of oxygenates to the product pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Corma A, Iborra S, Velty A (2007) A Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  2. Bond JQ, Alonso DM, Dumesic JA (2013) In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, 1st edn. Wiley, New York

    Google Scholar 

  3. Chheda JN, Dumesic JA (2007) Catal Today 123:59–70

    Article  CAS  Google Scholar 

  4. Serrano-Ruiz JC, Dumesic JA (2011) Energy Environ Sci 4:83–99

    Article  CAS  Google Scholar 

  5. Simonetti DA, Dumesic JA (2008) ChemSusChem 1:725–733

    Article  CAS  Google Scholar 

  6. Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gärtner CA, Dumesic JA (2008) Science 322:417–421

    Article  CAS  Google Scholar 

  7. Di Cosimo JI, Torres G, Apesteguía CR (2002) J Catal 208:114–123

    Article  Google Scholar 

  8. Torres G, Apesteguía CR, Di Cosimo JI (2007) Appl Catal A 317:161–170

    Article  CAS  Google Scholar 

  9. Di Cosimo JI, Acosta A, Apesteguía CR (2004) J Mol Catal A 222:87–96

    Article  Google Scholar 

  10. Torresi PA, Díez VK, Luggren PJ, Di Cosimo JI (2014) Catal Sci Technol 4:3203–3213

    Article  CAS  Google Scholar 

  11. Bravo-Suarez JJ, Subramaniam B, Chaudhari RV (2013) Appl Catal A 455:234–246

    Article  CAS  Google Scholar 

  12. Marcu IC, Tichit D, Fajula F, Tanchoux N (2009) Catal Today 147:231–238

    Article  CAS  Google Scholar 

  13. Zhou M, Zeng Z, Zhu H, Xiao G, Xiao R (2014) J Energy Chem 23:91–96

    Article  CAS  Google Scholar 

  14. Tanasoi S, Tanchoux N, Urda A, Tichit D, Sandulescu I, Fajula F, Marcu IC (2009) Appl Catal A 363:135–142

    Article  CAS  Google Scholar 

  15. Chmielarz L, Jabłonska M, Struminski A, Piwowarska Z, Wegrzyn A, Witkowski S, Michalik M (2013) Appl Catal B 130–131:152–162

    Article  Google Scholar 

  16. Chmielarz L, Piwowarska Z, Rutkowska M, Wojciechowska M, Dudek B, Witkowski S, Michalik M (2012) Catal Commun 17:118–125

    Article  CAS  Google Scholar 

  17. Di Cosimo JI, Díez VK, Apesteguía CR (1996) Appl Catal A 13:149–166

    Article  Google Scholar 

  18. Torresi PA, Díez VK, Luggren PJ, Di Cosimo JI (2013) Appl Catal A 458:119–129

    Article  CAS  Google Scholar 

  19. Monti DA, Baiker A (1983) J Catal 83:323–335

    Article  CAS  Google Scholar 

  20. Malet P, Caballero A (1988) J Chem Soc Faraday Trans I 84:2369–2375

    Article  CAS  Google Scholar 

  21. Kunkes EL, Gürbüz EI, Dumesic JA (2009) J Catal 266:236–249

    Article  CAS  Google Scholar 

  22. Díez VK, Torresi PA, Luggren PJ, Ferretti CA, Di Cosimo JI (2013) Catal Today 213:18–24

    Article  Google Scholar 

  23. Luggren P (2015) PhD Thesis, Universidad Nacional del Litoral

  24. Di Cosimo JI, Díez VK, Xu M, Iglesia E, Apesteguía CR (1998) J Catal 178:499–510

    Article  Google Scholar 

  25. Díez VK, Apesteguía CR, Di Cosimo JI (2003) J Catal 215:220–233

    Article  Google Scholar 

  26. Di Cosimo JI, Apesteguía CR (1994) J Mol Catal 91:369–386

    Article  Google Scholar 

  27. Boccuzzi F, Chiorino A, Martra G, Gargano M, Ravasio N, Carrozzini B (1997) J Catal 165:129–139

    Article  CAS  Google Scholar 

  28. Di Cosimo JI, Apesteguía CR, Ginés MJL, Iglesia E (2000) J Catal 190:261–275

    Article  Google Scholar 

  29. Choudhary TV, Phillips CB (2011) Appl Catal A 397:1–12

    Article  CAS  Google Scholar 

  30. Di Cosimo JI, Acosta A, Apesteguía CR (2005) J Mol Catal A 234:111–120

    Article  Google Scholar 

  31. Braun F, Di Cosimo JI (2006) Catal Today 116:206–215

    Article  CAS  Google Scholar 

  32. West RM, Kunkes EL, Simonetti DA, Dumesic JA (2009) Catal Today 147:115–125

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina (Grant PICT 1888/10), CONICET, Argentina (Grant PIP 11220090100203/10) and Universidad Nacional del Litoral, Santa Fe, Argentina (Grant CAID PI 64-103/11) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Di Cosimo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luggren, P.J., Apesteguía, C.R. & Di Cosimo, J.I. Conversion of Biomass-Derived 2-Hexanol to Liquid Transportation Fuels: Study of the Reaction Mechanism on Cu–Mg–Al Mixed Oxides. Top Catal 59, 196–206 (2016). https://doi.org/10.1007/s11244-015-0428-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0428-3

Keywords

Navigation