Skip to main content
Log in

Hemicellulose Hydrolysis in the Presence of Heterogeneous Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A prominent autocatalytic effect in the hydrolysis of hemicelluloses was observed in the presence of heterogeneous cation-exchange catalysts, Amberlyst 15 and Smopex 101. The kinetic models proposed were based on the reactivities of the non-hydrolysed sugar monomer units and the increase of the rate constant as the reaction progresses and the degree of polymerization decreases. General kinetic models were derived and the kinetic parameters, describing the autocatalytic effect, were determined by non-linear regression analysis. The kinetic model explained very well the overall kinetics, as well as the product distribution in the hydrolysis of hemicelluloses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mäki-Arvela P, Salmi T, Holmbom B, Willför S, Murzin DY (2011) Synthesis of sugars by hydrolysis of hemicelluloses—a review. Chem Rev 111:5638–5666

    Article  Google Scholar 

  2. Kusema BT, Hilpmann G, Mäki-Arvela P, Willför S, Holmbom B, Salmi T, Murzin DY (2011) Catal Lett 141:408–412

    Article  CAS  Google Scholar 

  3. Salmi T, Damlin P, Mikkola J-P, Kangas M (2011) Modelling and experimental verification of cellulose substitution kinetics. Chem Eng Sci 66:171–182

    Article  CAS  Google Scholar 

  4. Willför S, Rehn P, Sundberg A, Sundberg K, Holmbom B (2003) Tappi J 2:27

    Google Scholar 

  5. Maloney MT, Chapman TW (1985) Biotechnol Bioeng 27:355

    Article  CAS  Google Scholar 

  6. Kusema B, Tönnov T, Mäki-Arvela P, Salmi T, Willför S, Holmbom B, Murzin D (2012) Acid hydrolysis of O-acetylgalactoglucomannan. Catal Sci Technol 1:116–122

    Google Scholar 

  7. Gonzalez G, Lopez-Santin J, Caminal G, Sola S (1986) Biotechnol Bioeng 18:288

    Article  Google Scholar 

  8. Chen R, Lee YY, Torget R (1996) Appl Bioeng Biotechnol 57–58:133

    Google Scholar 

  9. Lavarack PB, Griffin GJ, Rodman D (2002) Biomass Bioenergy 23:367

    Article  CAS  Google Scholar 

  10. Kusema BT, Xu C, Mäki-Arvela P, Willför S, Holmbom B, Salmi T, Murzin DY (2010) Int J Chem React Eng 8:1

    Google Scholar 

  11. Salmi T, Mikkola J-P, Wärnå J (2010) Chemical reaction engineering and reactor technology. CRC Press Taylor & Francis Group, Boca Raton, p 615

    Google Scholar 

  12. Haario H (2007) ModEst—User’s Guide. Profmath Oy, Helsinki

    Google Scholar 

  13. Paatero E, Salmi T, Fagerstolt K (1992) Ind Eng Chem Res 31:2426–2437

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of the activities at the Åbo Akademi University Process Chemistry Centre (PCC), a centre of excellence financed by Åbo Akademi. Financial support from Academy of Finland is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapio Salmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmi, T., Murzin, D., Wärnå, J. et al. Hemicellulose Hydrolysis in the Presence of Heterogeneous Catalysts. Top Catal 57, 1470–1475 (2014). https://doi.org/10.1007/s11244-014-0320-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0320-6

Keywords

Navigation