Skip to main content
Log in

Methanol Reactivity on Silica-Supported Ceria Nanoparticles

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ceria (CeO2) has been used in a number of catalytic processes, either as a support or promoter. For a better understanding of the factors that control the reactivity of ceria, we have used well-ordered CeO2(111) films and ceria nanoparticles supported on an ordered SiO2 film, as model catalysts. The systems were examined in the dehydrogenation of methanol to formaldehyde as a test reaction by using the techniques of infrared spectroscopy and temperature programmed desorption. The results revealed low-temperature reactivity (below 450 K) for supported ceria particles that is not present on ordered films, which show reactivity at 565 K. The results indicate that low-coordinated sites play an important role in the methanol reactivity on ceria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bernal S, Kaspar J, Trovarelli A (1999) Recent progress in catalysis by ceria and related compounds—preface. Catal Today 50(2):173–443

    Article  CAS  Google Scholar 

  2. Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev-Sci Eng 38(4):439–520

    Article  CAS  Google Scholar 

  3. Jen HW et al (1999) Characterization of model automotive exhaust catalysts: Pd on ceria and ceria-zirconia supports. Catal Today 50(2):309–328

    Article  CAS  Google Scholar 

  4. Wachs IE (2005) Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal Today 100(1–2):79–94

    Article  CAS  Google Scholar 

  5. Sauer J, Dobler J (2004) Structure and reactivity of V2O5: bulk solid, nanosized clusters, species supported on silica and alumina, cluster cations and anions. Dalton Trans 19:3116–3121

    Article  Google Scholar 

  6. Ganduglia-Pirovano MV et al (2010) Role of ceria in oxidative dehydrogenation on supported vanadia catalysts. J Am Chem Soc 132(7):2345–2349

    Article  CAS  Google Scholar 

  7. Migani A et al (2010) Greatly facilitated oxygen vacancy formation in ceria nanocrystallites. Chem Commun 46(32):5936–5938

    Article  CAS  Google Scholar 

  8. Migani A et al (2010) Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale. J Mater Chem 20(46):10535–10546

    Article  CAS  Google Scholar 

  9. Loschen C et al (2008) Density functional studies of model cerium oxide nanoparticles. Phys Chem Chem Phys 10(37):5730–5738

    Article  CAS  Google Scholar 

  10. Wang AQ et al (2003) X-ray photoelectron spectroscopy study of electrodeposited nanostructured CeO2 films. J Vac Sci Technol B 21(3):1169–1175

    Article  CAS  Google Scholar 

  11. Tsunekawa S, Fukuda T, Kasuya A (2000) X-ray photoelectron spectroscopy of monodisperse CeO2−x nanoparticles. Surf Sci 457(3):L437–L440

    Article  CAS  Google Scholar 

  12. Qiu L et al (2006) Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder. Appl Surf Sci 252(14):4931–4935

    Article  CAS  Google Scholar 

  13. Baron M et al (2009) Interaction of gold with cerium oxide supports: CeO2(111) thin films vs CeOx nanoparticles. J Phys Chem C 113(15):6042–6049

    Article  CAS  Google Scholar 

  14. Wu ZL et al (2010) Probing defect sites on CeO2 nanocrystals with well-defined surface planes by raman spectroscopy and O2 adsorption. Langmuir 26(21):16595–16606

    Article  CAS  Google Scholar 

  15. Murugan B, Ramaswamy AV (2007) Defect-site promoted surface reorganization in nanocrystalline ceria for the low-temperature activation of ethylbenzene. J Am Chem Soc 129(11):3062

    Article  CAS  Google Scholar 

  16. Zhou K et al (2005) Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J Catal 229(1):206–212

    Article  CAS  Google Scholar 

  17. Kuhlenbeck H, Shaikhutdinov S, Freund H-J (2013) Well-ordered transition metal oxide layers in model catalysis—a series of case studies. Chem Rev 113(6):3986–4034

    Article  CAS  Google Scholar 

  18. Mullins DR, Radulovic PV, Overbury SH (1999) Ordered cerium oxide thin films grown on Ru(0001) and Ni(111). Surf Sci 429(1–3):186–198

    Article  CAS  Google Scholar 

  19. Siokou A, Nix RM (1999) Interaction of methanol with well-defined ceria surfaces: reflection/absorption infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption study. J Phys Chem B 103(33):6984–6997

    Article  CAS  Google Scholar 

  20. Mei D et al (2007) Methanol adsorption on the clean CeO2(111) surface: a density functional theory study. J Phys Chem C 111(28):10514–10522

    Article  CAS  Google Scholar 

  21. Beste A et al (2008) Adsorption and dissociation of methanol on the fully oxidized and partially reduced (111) cerium oxide surface: dependence on the configuration of the cerium 4f electrons. Surf Sci 602(1):162–175

    Article  CAS  Google Scholar 

  22. Badri A, Binet C, Lavalley J-C (1997) Use of methanol as an IR molecular probe to study the surface of polycrystalline ceria. J Chem Soc, Faraday Trans 93(6):1159–1168

    Article  CAS  Google Scholar 

  23. Li C et al (1990) Spectroscopic identification of adsorbed species derived from adsorption and decomposition of formic acid, methanol, and formaldehyde on cerium oxide. J Catal 125(2):445–455

    Article  CAS  Google Scholar 

  24. Binet C, Daturi M, Lavalley J-C (1999) IR study of polycrystalline ceria properties in oxidised and reduced states. Catal Today 50(2):207–225

    Article  CAS  Google Scholar 

  25. Ferrizz RM et al (2001) Structure sensitivity of the reaction of methanol on ceria. Langmuir 17(8):2464–2470

    Article  CAS  Google Scholar 

  26. Mullins DR, Robbins MD, Zhou J (2006) Adsorption and reaction of methanol on thin-film cerium oxide. Surf Sci 600(7):1547–1558

    Article  CAS  Google Scholar 

  27. Löffler D et al (2010) Growth and structure of crystalline silica sheet on Ru(0001). Phys Rev Lett 105(14):146104

    Article  Google Scholar 

  28. Yang B et al (2012) Thin silica films on Ru(0001): monolayer, bilayer and three-dimensional networks of [SiO4] tetrahedra. Phys Chem Chem Phys 14(32):11344–11351

    Article  CAS  Google Scholar 

  29. Yang B et al (2013) Hydroxylation of metal-supported sheet-like silica films. J Phys Chem C 117(16):8336–8344

    Article  CAS  Google Scholar 

  30. Wlodarczyk R et al (2013) The atomic structure of an ultrathin Fe-silicate film grown on a metal: a monolayer of clay? J Am Chem Soc 135(51):19222–19228

    Article  CAS  Google Scholar 

  31. Abbott HL et al (2010) Relating methanol oxidation to the structure of ceria-supported vanadia monolayer catalysts. J Catal 272(1):82–91

    Article  CAS  Google Scholar 

  32. Fronzi M et al (2009) Stability and morphology of cerium oxide surfaces in an oxidizing environment: a first-principles investigation. J Chem Phys 131(10):104701–104716

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the COST Action CM1104 “Reducible oxide chemistry, structure and functions”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamil Shaikhutdinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uhlrich, J.J., Yang, B. & Shaikhutdinov, S. Methanol Reactivity on Silica-Supported Ceria Nanoparticles. Top Catal 57, 1229–1235 (2014). https://doi.org/10.1007/s11244-014-0296-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0296-2

Keywords

Navigation