Skip to main content

Advertisement

Log in

PdZn Surface Alloys as Models of Methanol Steam Reforming Catalysts: Molecular Studies by LEED, XPS, TPD and PM-IRAS

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The formation and stability of PdZn/Pd(111) surface alloys have been studied, with emphasis on their interaction with CO, methanol and D2O, applying complementary techniques such as low energy electron diffraction, X-ray photoelectron spectroscopy, temperature programmed desorption (TPD), and polarization–modulation infrared reflection absorption spectroscopy. PdZn surface alloys represent well-suited model systems for technological methanol steam reforming (MSR) catalysts. It could be shown that upon Zn deposition on Pd(111) at or below room temperature non-interacting Zn layers are formed first, that subsequently transform to PdZn surface alloys upon annealing above 473 K. At annealing temperatures above approximately 623 K the surface alloy starts to decompose, finally restoring the clean Pd(111) surface. TPD spectra reveal that methanol was decomposing to a significant amount on Pd(111), yielding CO and CHx (apart from H2), a process that did not occur on the PdZn surface alloys (i.e. methanol desorbed molecularly). This difference in part explains the improved catalytic properties (selectivity and stability) of PdZn catalysts for the MSR reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Trimm DL, Onsan ZI (2001) Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal Rev 43:31–84

    Article  CAS  Google Scholar 

  2. Palo DR, Dagle RA, Holladay JD (2007) Methanol steam reforming for hydrogen production. Chem Rev 107:3992–4021

    Article  CAS  Google Scholar 

  3. Iwasa N, Kudo S, Takahashi H, Masuda S, Takezawa N (1993) Highly selective supported Pd catalysts for steam reforming of methanol. Catal Lett 19:211–216

    Article  CAS  Google Scholar 

  4. Iwasa N, Mayanagi T, Nomura W, Arai M, Takezawa N (2003) Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol. Appl Catal A 248:153–160

    Article  CAS  Google Scholar 

  5. Haghofer A, Ferri D, Föttinger K, Rupprechter G (2012) Who is doing the job? Unraveling the role of Ga2O3 in methanol steam reforming on Pd2 Ga/Ga2O3. ACS Catal 2:2305–2315

    Article  CAS  Google Scholar 

  6. Haghofer A, Föttinger K, Nachtegaal M, Armbrüster M, Rupprechter G (2012) Microstructural changes of supported intermetallic nanoparticles under reductive and oxidative conditions: an in situ X-ray absorption study of Pd/Ga2O3. J Phys Chem C 116:21816–21827

    Article  CAS  Google Scholar 

  7. Takezwaw N, Iwasa N (1997) steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals. Catal Today 36:45–56

    Article  Google Scholar 

  8. Föttinger K, van Bokhoven JA, Nachtegaal M, Rupprechter G (2011) Dynamic structure of a working methanol steam reforming catalyst. in situ quick-EXAFS on Pd/ZnO nanoparticles. J Phys Chem Lett 2:428–433

    Article  Google Scholar 

  9. Chen ZX, Neyman KM, Gordienko AB, Rösch N (2003) Surface structure and stability of PdZn and PtZn alloys: density-functional slab model studies. Phys Rev B 68:075417

    Article  Google Scholar 

  10. Bayer A, Flechtner K, Denecke R, Steinruck HP, Neyman KM, Rosch N (2006) Electronic properties of thin Zn layers on Pd(111) during growth and alloying. Surf Sci 600:78–94

    Article  CAS  Google Scholar 

  11. Gabasch H, Knop-Gericke A, Schlögl R, Penner S, Jenewein B, Hayek K, Klötzer B (2006) Zn adsorption on Pd(111): ZnO and PdZn alloy formation. J Phys Chem B 110:11391–11398

    Article  CAS  Google Scholar 

  12. Rameshan C, Stadlmayr W, Weilach C, Penner S, Lorenz H, Hävecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Schlögl R, Memmel N, Zemlyanov D, Rupprechter G, Klötzer B (2010) Subsurface-controlled CO2 selectivity of PdZn near-surface alloys in H2 generation by methanol steam reforming. Angew Chem Int Ed 49:3224–3227

    Article  CAS  Google Scholar 

  13. Stadlmayr W, Rameshan C, Weilach C, Lorenz H, Hävecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Zemlyanov D, Penner S, Schlögl R, Rupprechter G, Klötzer B, Memmel N (2010) Temperature-induced modifications of PdZn layers on Pd(111). J Phys Chem C 114:10850–10856

    Article  CAS  Google Scholar 

  14. Jeroro E, Lebarbler V, Datye A, Wang Y, Vohs JM (2007) Interaction of CO with surface PdZn alloys. Surf Sci 601:5546–5554

    Article  CAS  Google Scholar 

  15. Jeroro E, Vohs JM (2008) Zn modification of the reactivity of Pd(111) toward methanol and formaldehyde. J Am Chem Soc 130:10199–10207

    Article  CAS  Google Scholar 

  16. Rodriguez JA (1994) Interactions in bimetallic bonding: electronic and chemical properties of PdZn surfaces. J Phys Chem 98:5758–5764

    Article  CAS  Google Scholar 

  17. Gabasch H, Knop-Gericke A, Schloegl R, Borasio M, Weilach C, Rupprechter G, Penner S, Jenewein B, Hayek K, Kloetzer B (2007) Comparison of the reactivity of different Pd–O species in CO oxidation. PCCP 9:533–540

    Article  CAS  Google Scholar 

  18. Rupprechter G (2007) Sum frequency generation and polarization–modulation infrared reflection absorption spectroscopy of functioning model catalysts from ultrahigh vacuum to ambient pressure. Adv Catal 51:133–263

    CAS  Google Scholar 

  19. Rupprechter G, Weilach C (2008) Spectroscopic studies of surface–gas interactions and catalyst restructuring at ambient pressure: mind the gap. J Phys Condens Matter 20:184019

    Article  Google Scholar 

  20. Borasio M, de la Fuente OR, Rupprechter G, Freund HJ (2005) In situ studies of methanol decomposition and oxidation on Pd(111) by PM-IRAS and XPS spectroscopy. J Phys Chem B 109:17791–17794

    Article  CAS  Google Scholar 

  21. Greenler RG (1966) Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J Chem Phys 44:310

    Article  CAS  Google Scholar 

  22. Barner BJ, Green MJ, Saez EI, Corn RM (1991) Polarization modulation Fourier-transform infrared reflectance measurements of thin-films and and monolayers at metal-surfaces utilizing real-time sampling electronics. Anal Chem 63:55–60

    Article  CAS  Google Scholar 

  23. Kratzer M, Tamtögl A, Killmann J, Schennach R, Winkler A (2009) Preparation and calibration of ultrathin Zn layers on Pd(111). Appl Surf Sci 255:5755–5759

    Article  CAS  Google Scholar 

  24. Weirum G, Kratzer M, Koch HP, Tamtögl A, Killmann J, Bako I, Winkler A, Surnev S, Netzer FP, Schennach R (2009) Growth and desorption kinetics of ultrathin Zn layers on Pd(111). J Phys Chem C 113:9788–9796

    Article  CAS  Google Scholar 

  25. Koch HP, Bako I, Weirum G, Kratzer M, Schennach R (2010) A theoretical study of Zn adsorption and desorption on a Pd(111) substrate. Surf Sci 604:926–931

    Article  CAS  Google Scholar 

  26. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics, Inc., Eden Prairie

    Google Scholar 

  27. Neyman KM, Lim KH, Chen ZX, Moskaleva LV, Bayer A, Reindl A, Borgmann D, Denecke R, Steinrück HP, Rösch N (2007) Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition. PCCP 9:3470–3482

    Article  CAS  Google Scholar 

  28. Friedrich M, Ormeci A, Grin Y, Armbruster M (2010) PdZn or ZnPd: charge transfer and Pd–Pd bonding as the driving force for the tetragonal distortion of the cubic crystal structure. Z Anorg Allg Chem 636:1735–1739

    Article  CAS  Google Scholar 

  29. Zemlyanov D, Aszalos-Kiss B, Kleimenov E, Teschner D, Zafeiratos S, Hävecker M, Knop-Gericke A, Schlögl R, Gabasch H, Unterberger W, Hayek K, Klötzer B (2006) In situ XPS study of Pd(111) oxidation. Part 1: 2D oxide formation in 10−3 mbar O2. Surf Sci 600:983–994

    Article  CAS  Google Scholar 

  30. Gabasch H, Unterberger W, Hayek K, Klötzer B, Kleimenov E, Teschner D, Zafeiratos S, Hävecker M, Knop-Gericke A, Schlögl R, Han J, Ribeiro FH, Aszalos-Kiss B, Curtin T, Zemlyanov D (2006) In situ XPS study of Pd(111) oxidation at elevated pressure. Part 2: palladium oxidation in the 10−1 mbar range. Surf Sci 600:2980–2989

    Article  CAS  Google Scholar 

  31. Stadlmayr W, Penner S, Klotzer B, Memmel N (2009) Growth, thermal stability and structure of ultrathin Zn-layers on Pd(111). Surf Sci 603:251–255

    Article  CAS  Google Scholar 

  32. Huang Y, Ding W, Chen Z-X (2010) Effect of Zn on the adsorption of CO on Pd(111). J Chem Phys 133:214702

    Article  Google Scholar 

  33. Rodriguez JA (1996) Physical and chemical properties of bimetallic surfaces. Surf Sci Rep 24:225–287

    Article  Google Scholar 

  34. Weilach C, Kozlov SM, Holzapfel HH, Föttinger K, Neyman KM, Rupprechter G (2012) Geometric arrangement of components in bimetallic PdZn/Pd(111) surfaces modified by CO adsorption: a combined study by density functional calculations, polarization-modulated infrared reflection absorption spectroscopy, and temperature-programmed desorption. J Phys Chem C 116:18768–18778

  35. Conant T, Karim AM, Lebarbier V, Wang Y, Girgsdies F, Schlögl R, Datye A (2008) Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. J Catal 257:64–70

    Article  CAS  Google Scholar 

  36. Stadlmayr W, Rameshan C, Weilach C, Lorenz H, Hävecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Zemlyanov D, Penner S, Schlögl R, Rupprechter G, Klötzer B, Memmel N (2010) Temperature-induced modifications of PdZn layers on Pd(111). J Phys Chem C 114:10850–10856

    Article  CAS  Google Scholar 

  37. Redhead PA (1962) Thermal desorption of gases. Vacuum 12:203–211

    Article  CAS  Google Scholar 

  38. Guo X, Yates JT (1989) Dependence of effective desorption kinetic parameters on surface coverage and adsorption temperature: CO on Pd(111). J Chem Phys 90:6761–6766

    Article  CAS  Google Scholar 

  39. Tamtogl A, Kratzer M, Killman J, Winkler A (2008) Adsorption/desorption of H2 and CO on Zn-modified Pd(111). J Chem Phys. 129:224706

    Article  Google Scholar 

  40. Weirum G, Kratzer M, Koch H, Tamtoegl A, Killmann J, Bako I (2009) Growth and desorption kinetics of ultrathin Zn layers on Pd(111). J Phys Chem C 113:9788

    Article  CAS  Google Scholar 

  41. de la Fuente OR, Borasio M, Galletto P, Rupprechter G, Freund HJ (2004) The influence of surface defects on methanol decomposition on Pd(111) studied by XPS and PM-IRAS. Surf Sci 566–568:740–745

    Article  Google Scholar 

  42. Borasio M, Rodriguez de la Fuente O, Rupprechter G, Freund H-J (2005) In situ studies of methanol decomposition and oxidation on Pd(111) by PM-IRAS and XPS spectroscopy. J Phys Chem B 109:17791–17794

    Article  CAS  Google Scholar 

  43. Baeumer M, Libuda J, Neyman KM, Roesch N, Rupprechter G, Freund HJ (2007) Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions. PCCP 9:3541–3558

    Article  CAS  Google Scholar 

  44. Demirci E, Winkler A (2008) Quantitative determination of reaction products by in-line thermal desorption spectroscopy: the system methanol/Pd(111). J Vac Sci Technol A 26:78–82

    Article  CAS  Google Scholar 

  45. Chen ZX, Neyman KM, Lim KH, Rösch N (2004) CH3O decomposition on PdZn(111), Pd(111), and Cu(111): a theoretical study. Langmuir 20:8068–8077

    Article  CAS  Google Scholar 

  46. Liu S, Takahashi K, Ayabe M (2003) Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of Pd loading. Catal Today 87:247–253

    Article  CAS  Google Scholar 

  47. Dagle RA, Platon A, Palo DR, Datye AK, Vohs JM, Wang Y (2008) PdZnAl catalysts for the reactions of water-gas-shift, methanol steam reforming, and reverse-water-gas-shift. Appl Catal A 342:63–68

    Article  CAS  Google Scholar 

  48. Kawamura Y, Yahata T, Igarashi A (2010) Improvement of performance of palladium-based catalyst for small methanol reformer. Chem Eng Sci 65:201–207

    Article  CAS  Google Scholar 

  49. Neyman KM, Lim KH, Chen Z-X, Moskaleva LV, Bayer A, Reindl A, Borgmann D, Denecke R, Steinruck H-P, Rosch N (2007) Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition. PCCP 9:3470–3482

    Article  CAS  Google Scholar 

  50. Morkel M, Kaichev VV, Rupprechter G, Freund HJ, Prosvirin IP, Bukhtiyarov VI (2004) Methanol dehydrogenation and formation of carbonaceous overlayers on Pd(111) studied by high-pressure SFG and XPS spectroscopy. J Phys Chem B 108:12955–12961

    Article  CAS  Google Scholar 

  51. Morkel M, Rupprechter G, Freund H-J (2005) Finite size effects on supported Pd nanoparticles: interaction of hydrogen with CO and C2H4. Surf Sci 588:L209–L219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Science Fund (FWF) [SFB-F45-02 FOXSI], by COST Action CM0904 (IMC-SRM), and by Vienna University of Technology via the Doctoral Program “Catalysis Materials and Technology”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rupprechter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzapfel, H.H., Wolfbeisser, A., Rameshan, C. et al. PdZn Surface Alloys as Models of Methanol Steam Reforming Catalysts: Molecular Studies by LEED, XPS, TPD and PM-IRAS. Top Catal 57, 1218–1228 (2014). https://doi.org/10.1007/s11244-014-0295-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0295-3

Keywords

Navigation