Skip to main content

Advertisement

Log in

Higher Alcohol Synthesis Using K-Doped CoRhMoS2/MWCNT Catalysts: Influence of Pelletization, Particle Size and Incorporation of Binders

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this study, alkalinized MWCNT supported MoS2 catalysts have been doubly-promoted with Co and Rh. Catalysts were prepared by the conventional co-impregnation method and stabilized under argon atmosphere. Characterization of the oxidic samples by BET revealed that the mesoporosity of the pristine MWCNT support was not compromised after loading a combined total of 30 wt% metals (9 wt% K, 4.5 wt% Co, 1.5 wt% Rh, and 15 wt% Mo) on the support; however, a significant decrease in specific surface area was observed. Broad angle XRD analysis confirmed the homogenous dispersion of catalyst metals on the support. Two catalyst grain sizes were first investigated to elucidate the effect of particle size: a finely ground powder (88 μm) and a pelletized form (1,780 μm). Despite the total alcohol yield of 0.261 g/(gcat h) observed by conducting higher alcohol synthesis reaction at T = 330 °C, P = 8.3 MPa, H2/CO = 1.25, and GHSV = 3.6 m 3STP /(kgcat h) for the fine powdered sample, the relatively higher pressure drop could be minimized by using the pelletized form of the catalyst. Finally, a systematic study of variety of selected binders was conducted to gain insight of catalyst’s applicability for industrial purposes. Three selected binders namely: bentonite clay, coal tar, and humic acid were thus investigated; taking into consideration significant factors such as melting point and binder requirement per catalyst support. The CO conversions evaluated for the two binder-free catalysts (88 and 1,700 μm) showed that the catalyst with fine particle sizes (88 μm) performed better than that in the pelletized form (binder-free, 1,700 μm); yielding a maximum ethanol selectivity of 38.5 % at steady-state reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Subramani V, Gangwal SK (2008) Energy Fuels 22:814–839

    Article  CAS  Google Scholar 

  2. Forzatti P, Tronconi E, Pasquon I (1991) Catal Rev Sci Eng 33(1 and 2):109–168

    Article  CAS  Google Scholar 

  3. Xu XD, Doesburg BM, Sckolen JF (1987) Catal Today 2:125

    Article  CAS  Google Scholar 

  4. Verkerk AN, Jaeger B, Finkeldei CH, Keim W (1999) Appl Catal 186:407

    Article  CAS  Google Scholar 

  5. Muramatsu A, Tatsumi T, Tominaga H (1992) J Phys Chem 96:1334

    Article  CAS  Google Scholar 

  6. Herman RG (2000) Catal Today 55:233

    Article  CAS  Google Scholar 

  7. Courty P, Chaumette P (1987) Energy Prog 7:23–30

    CAS  Google Scholar 

  8. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GD, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  9. Yu C, Fan J, Tian B, Zhao D, Stucky GD (2002) Adv Mater 14:1742–1745

    Article  CAS  Google Scholar 

  10. Liu ZY, Li XG, Close MR, Kugler EL, Petersen JL, Dadyburjor DB (1997) Ind Eng Chem Res 36:3085

    Article  CAS  Google Scholar 

  11. Iranmahboob J, Hill DO, Toghiani H (2002) Appl Catal 231:99

    Article  CAS  Google Scholar 

  12. Li ZR, Fu YL, Jiang M, Meng M, Xie YN, Hu TD, Liu T (2000) Catal Lett 65:43

    Article  CAS  Google Scholar 

  13. Foley HC, Hong AJ, Brinen JS, Allard LF, Garratt-Reed AJ (1991) Appl Catal 61:351–375

    Article  Google Scholar 

  14. Eswaramoorthi I, Dalai AK (2009) Catal Lett 131:203–212

    Article  CAS  Google Scholar 

  15. Surisetty VR, Dalai AK, Kozinski J (2010) Ind Eng Chem Res 49:6956–6963

    Article  CAS  Google Scholar 

  16. Zhongren Y, Economy J (2006) Microporous Mesoporous Mater 96(1–3):314–320

    Google Scholar 

  17. Boehm HP (1996) Adv Catal, vol 1. Academic Press, New York, pp 179–274

    Google Scholar 

  18. Haber J (1991) Pure Appl Chem 63(9):1227–1246

    Article  Google Scholar 

  19. Khodakov AY, Griboval A, Bechara R, Villain FJ (2001) Phys Chem B 105:9805

    Article  CAS  Google Scholar 

  20. Tanev TP, Pinnavaia TJ (1996) Chem Mater 8:2068

    Article  CAS  Google Scholar 

  21. Sigurdson SK (2010) MSc Thesis, University of Saskatchewan, Saskatoon, Canada

  22. Vradman L, Landau MV, Kantorovich D, Koltypin Y, Gedanken A (2005) Microporous Mesoporous Mater 70:307–318

    Google Scholar 

  23. Eswaramoorthi I, Sundaramurthy V, Das N, Dalai AK, Adjaye J (2008) Appl Catal A Gen 339:187

    Article  CAS  Google Scholar 

  24. Calafata A, Vivas F, Brito JL (1998) Appl Catal A Gen 172:217

    Article  Google Scholar 

  25. Surisetty VR, Tavasoli A, Dalai AK (2009) Appl Catal A Gen 365:243–251

    Article  CAS  Google Scholar 

  26. Faraj AA, Tahar L, Mamdouh A-H, Muataz AA (2010) Arab J Sci Eng 1C:37–48

    Google Scholar 

  27. Jang S-R, Vittal R, Kim K-J (2004) Langmuir 20:9807–9810

    Article  CAS  Google Scholar 

  28. Li B (2012) Fourier Transform-Materials Analysis. Intech, Shanghai, p 165–190

  29. Korodi G (2012) Technology 11(1):61–65

    Google Scholar 

  30. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Phys. Rep. 409:47-99

    Google Scholar 

  31. Shimodaira N, Masui A (2002) J Appl Phys 92:902

    Article  CAS  Google Scholar 

  32. Vinu A, Srinivasu P, Takahashi M, Mori T, Balasubramanian VV, Ariga K (2007) Microporous Mesoporous Mater 100:20–26

    Article  CAS  Google Scholar 

  33. Stagnaro SYM, Volzoneb C, Rueda ML (2012) Mater Res 15(4):549–553

    Article  CAS  Google Scholar 

  34. Fogler SH (2006) Elements of Chemical Reaction Engineering. 4th edn. Pearson Education, Inc., New Jersey, p 813–838

    Google Scholar 

  35. Abbaslou RM, Soltan J, Dalai AK (2011) J Fuel 90:1139–1144

    Article  Google Scholar 

  36. Surisetty VR, Dalai AK, Kozinski J (2011) Appl Catal A Gen 393:50–58

    Article  CAS  Google Scholar 

  37. Speight JG (2000) The desulfurization of heavy oils and residua. Marcel Dekker, New York

    Google Scholar 

  38. Chiang S-W, Chang C-C, Shie J-L, Chang C-Y, Ji D-R, Tseng J-Y, Chang C-F, Chen Y-H (2012) Energies 5:4147–4164. doi:10.3390/en5104147

    Article  CAS  Google Scholar 

  39. Mawson S, McCutchen MS, Lim PK, Roberts GW (1993) Energy Fuels 7:257–267

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Natural Science and Engineering Research Council of Canada for financing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Dalai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boahene, P.E., Surisetty, V.R., Sammynaiken, R. et al. Higher Alcohol Synthesis Using K-Doped CoRhMoS2/MWCNT Catalysts: Influence of Pelletization, Particle Size and Incorporation of Binders. Top Catal 57, 538–549 (2014). https://doi.org/10.1007/s11244-013-0210-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0210-3

Keywords

Navigation