Skip to main content
Log in

Microstructural and Defect Analysis of Metal Nanoparticles in Functional Catalysts by Diffraction and Electron Microscopy: The Cu/ZnO Catalyst for Methanol Synthesis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The application of different methods for a microstructural analysis of functional catalysts is reported for the example of different Cu/ZnO-based methanol synthesis catalysts. Transmission electron microscopy and diffraction were used as complementary techniques to extract information on the size and the defect concentration of the Cu nano-crystallites. The results, strengths and limitations of the two techniques and of different evaluation methods for line profile analysis of diffraction data including Rietveld-refinement, Scherrer- and (modified) Williamson–Hall-analyses, single peak deconvolution and whole powder pattern modeling are compared and critically discussed. It was found that in comparison with a macrocrystalline pure Cu sample, the catalysts were not only characterized by a smaller crystallite size, but also by a high concentration of lattice defects, in particular stacking faults. Neutron diffraction was introduced as a valuable tool for such analysis, because of the larger number of higher-order diffraction peaks that can be detected with this method. An attempt is reported to quantify the different types of defects for a selected catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Tornqvist E, Norskov JK (1999) Role of steps in N-2 activation on Ru(0001). Phys Rev Lett 83(9):1814–1817. doi:10.1103/PhysRevLett.83.1814

    Article  Google Scholar 

  2. Rostrup-Nielsen J, Norskov JK (2006) Step sites in syngas catalysis. Top Catal 40(1–4):45–48. doi:10.1007/s11244-006-0107-5

    Article  CAS  Google Scholar 

  3. Abild-Pedersen F, Greeley J, Norskov JK (2005) Understanding the effect of steps, strain, poisons, and alloying: methane activation on Ni surfaces. Catal Lett 105(1–2):9–13. doi:10.1007/s10562-005-7998-9

    Article  CAS  Google Scholar 

  4. Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbaek B, Bligaard T, Norskov JK (2009) Trends in CO oxidation rates for metal nanoparticles and close-packed, stepped, and kinked surfaces. J Phys Chem C 113(24):10548–10553. doi:10.1021/Jp811185g

    Article  CAS  Google Scholar 

  5. Freund HJ (2010) Model studies in heterogeneous catalysis. Chem Eur J 16(31):9384–9397. doi:10.1002/chem.201001724

    Article  CAS  Google Scholar 

  6. Datye AK (2003) Electron microscopy of catalysts: recent achievements and future prospects. J Catal 216(1–2):144–154. doi:10.1016/S0021-9517(02)00113-6

    Article  CAS  Google Scholar 

  7. Weidenthaler C (2011) Pitfalls in the characterization of nanoporous and nanosized materials. Nanoscale 3(3):792–810. doi:10.1039/C0nr00561d

    Article  CAS  Google Scholar 

  8. Pandey AD, Guttel R, Leoni M, Schuth F, Weidenthaler C (2010) Influence of the microstructure of gold-zirconia yolk–shell catalysts on the CO oxidation activity. J Phys Chem C 114(45):19386–19394. doi:10.1021/Jp106436h

    Article  CAS  Google Scholar 

  9. Vogel W (1990) Size distributions of supported metal-catalysts—an analytical X-ray-line profile fitting routine. J Catal 121(2):356–363. doi:10.1016/0021-9517(90)90244-E

    Article  CAS  Google Scholar 

  10. Tsybulya SV, Kryukova GN, Goncharova SN, Shmakov AN, Balzhinimaev BS (1995) Study of the real structure of silver supported catalysts of different dispersity. J Catal 154(2):194–200. doi:10.1006/jcat.1995.1160

    Article  CAS  Google Scholar 

  11. Bautista FM, Campelo JM, Garcia A, Luna D, Marinas JM, Quiros RA, Romero AA (1998) Influence of surface support properties on the liquid-phase selective hydrogenation of phenylacetylene on supported nickel catalysts. Catal Lett 52(3–4):205–213. doi:10.1023/A:1019008528391

    Article  CAS  Google Scholar 

  12. Mittemeijer EJ, Scardi P (2004) Diffraction analysis of the microstructure of materials. Springer, Berlin

  13. Mittemeijer EJ, Welzel U (2008) The state of the art of the diffraction analysis of crystallite size and lattice strain. Z Kristallogr 223:552–560

    Article  CAS  Google Scholar 

  14. Savaloni H, Gholipour-Shahraki M, Player MA (2006) A comparison of different methods for X-ray diffraction line broadening analysis of Ti and Ag UHV deposited thin films: nanostructural dependence on substrate temperature and film thickness. J Phys D Appl Phys 39(10):2231

    Article  CAS  Google Scholar 

  15. Behrens M, Schlögl R (2012) X-ray diffraction and small angle X-ray scattering. In: Characterization of solid materials and heterogeneous catalysts, Wiley, p 609–653. doi:10.1002/9783527645329.ch15

  16. Kasatkin I, Kurr P, Kniep B, Trunschke A, Schlogl R (2007) Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis. Angew Chem Int Ed 46(38):7324–7327. doi:10.1002/anie.200702600

    Article  CAS  Google Scholar 

  17. Gunter MM, Ressler T, Bems B, Buscher C, Genger T, Hinrichsen O, Muhler M, Schlögl R (2001) Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis. Catal Lett 71(1–2):37–44

    Article  CAS  Google Scholar 

  18. Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, Norskov JK, Schlögl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336(6083):893–897

    Article  CAS  Google Scholar 

  19. Behrens M (2009) Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts. J Catal 267(1):24–29. doi:10.1016/j.jcat.2009.07.009

    Article  CAS  Google Scholar 

  20. Waller D, Stirling D, Stone FS, Spencer MS (1989) Copper-zinc oxide catalysts. Activity in relation to precursor structure and morphology. Faraday Discuss Chem Soc 87:107–120

    Article  CAS  Google Scholar 

  21. Spencer MS (1999) The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction. Top Catal 8:259–266

    Article  CAS  Google Scholar 

  22. Behrens M, Furche A, Kasatkin I, Trunschke A, Busser W, Muhler M, Kniep B, Fischer R, Schlogl R (2010) The potential of microstructural optimization in metal/oxide catalysts: higher intrinsic activity of copper by partial embedding of copper nanoparticles. ChemCatChem 2(7):816–818. doi:10.1002/cctc.201000017

    Article  CAS  Google Scholar 

  23. Klug HP, Alexander LE (1974) X-ray diffraction procedures. Wiley, New York

    Google Scholar 

  24. Balzar D, Audebrand N, Daymond MR, Fitch A, Hewat A, Langford JI, Le Bail A, Louër D, Masson O, McCowan CN, Popa NC, Stephens PW, Toby BH (2004) Size–strain line-broadening analysis of the ceria round-robin sample. J Appl Crystallogr 37(6):911–924

    Article  CAS  Google Scholar 

  25. Többens DM, Tovar M (2002) Peak shape at the axially focusing E9 powder diffractometer—theoretical and experimental description. Appl Phys A Mater Sci Process 74:s136–s138

    Article  Google Scholar 

  26. Caglioti G, Paoletti A, Ricci FP (1958) Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl Instrum 3(4):223–228

    Article  CAS  Google Scholar 

  27. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71

    Article  CAS  Google Scholar 

  28. Wertheim GK, Butler MA, West KW, Buchanan DNE (1974) Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev Sci Instrum 45(11):1369–1371

    Article  Google Scholar 

  29. Cheary RW, Coelho AA, Cline JP (2004) Fundamental parameters line profile fitting in laboratory diffractometers. J Res Natl Inst Stand Technol 109:1–25

    Article  Google Scholar 

  30. Le Bail A, Duroy H, Fourquet JL (1988) Ab initio structure determination of LiSbWO$_6$ by X-ray powder diffraction. Mater Res Bull 23(3):447–452

    Article  Google Scholar 

  31. Treacy MMJ, Newsam JM, Deem MW (1991) A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc R Soc Lond A 433(1889):499–520

    Article  Google Scholar 

  32. Leoni M, Confente T, Scardi P (2006) PM2K: a flexible program implementing whole powder pattern modelling. Z Kristallogr Suppl 23:249–254

    Article  Google Scholar 

  33. Twigg MV, Spencer MS (2003) Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis. Top Catal 22(3–4):191–203

    Article  CAS  Google Scholar 

  34. Romeo M, Da Costa V, Bardou F (2003) Broad distribution effects in sums of lognormal random variables. Eur Phys J B 32:513–525

    Article  CAS  Google Scholar 

  35. Gai PL, Boyes ED (2003) Electron microscopy in heterogeneous catalysis. Institute of Physics, Bristol

    Book  Google Scholar 

  36. Yao MH, Smith DJ, Datye AK (1993) Comparative-study of supported catalyst particles by electron-microscopy methods. Ultramicroscopy 52(3–4):282–288. doi:10.1016/0304-3991(93)90037-X

    Article  CAS  Google Scholar 

  37. Delhez R, Keijser TH, Mittemeijer EJ (1982) Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis. Fresenius J Anal Chem 312:1–16

    Article  CAS  Google Scholar 

  38. Warren BE (1990) X-ray diffraction. Dover, New York

    Google Scholar 

  39. Balogh L, Ribárik G, Ungár T (2006) Stacking faults and twin boundaries in fcc crystals determined by X-ray diffraction profile analysis. J Appl Phys 100:023512

    Article  Google Scholar 

  40. Scherrer P (1918) Göttinger Nachrichten Gesell 2:98

    Google Scholar 

  41. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  42. Langford JI, Louër D (1996) Powder diffraction. Rep Prog Phys 59:131–234

    Article  CAS  Google Scholar 

  43. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11(2):102–113

    Article  CAS  Google Scholar 

  44. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31

    Article  CAS  Google Scholar 

  45. Brandstetter S (2008) Williamson-Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations. Acta Mater 56:165–176

    Article  CAS  Google Scholar 

  46. Ungar T, Tichy G (1999) The effect of dislocation contrast on X-ray line profiles in untextured polycrystals. Phys Stat Sol A 171:425

    Article  CAS  Google Scholar 

  47. Warren BE (1961) X-ray measurements of stacking fault widths in fcc metals. J Appl Phys 32:2428

    Article  CAS  Google Scholar 

  48. Ungar T, Borbely A (1996) The effect of dislocation contrast on xray line broadening: a new approach to line profile analysis. Appl Phys Lett 69:3173

    Article  CAS  Google Scholar 

  49. Gubicza J, Szepvolgi J, Mohai I, Zsoldos L, Ungar T (2000) Particle size distribution and dislocation density determined by high resolution X-ray diffraction in nanocrystalline silicon nitride powders. Mater Sci Eng A 280:263–269

    Article  Google Scholar 

  50. Ungar T, Gubicza J, Ribarik G, Borbely A (2001) Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical applications to cubic and hexagonal crystals. J Appl Cryst 34:298–310

    Article  CAS  Google Scholar 

  51. Snyder RL, Bunge HJ, Fiala J (2000) Defect and microstructure analysis by diffraction. OUP/International Union of Crystallography, New York

    Google Scholar 

  52. Warren BE (1959) X-ray studies of deformed metals. Prog Met Phys 8:147–202

    Article  CAS  Google Scholar 

  53. Paterson MS (1952) X-ray diffraction by face-centered cubic crystals with deformation faults. J Appl Phys 23(8):805–811

    Article  CAS  Google Scholar 

  54. Kandemir T (2013) In-situ study of catalytic processes at high temperatures: neutron diffraction of <p>a methanol synthesis catalyst under industrial conditions. Angew Chem Int Ed. doi:10.1002/anie.201209539

    Google Scholar 

  55. Velterop L, Delhez R, de Keijser TH, Mittemeijer EJ, Reefman D (2000) X-ray diffraction analysis of stacking and twin faults in f.c.c. metals: a revision and allowance for texture and non-uniform fault probabilities. J Appl Crystallogr 33(2):296–306

    Article  CAS  Google Scholar 

  56. Reed RP, Schramm RE (1974) Relationship between stacking-fault energy and X-ray measurements of stacking-fault probability and microstrain. J Appl Phys 45(11):4705–4711

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Schlögl or Malte Behrens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1492 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandemir, T., Kasatkin, I., Girgsdies, F. et al. Microstructural and Defect Analysis of Metal Nanoparticles in Functional Catalysts by Diffraction and Electron Microscopy: The Cu/ZnO Catalyst for Methanol Synthesis. Top Catal 57, 188–206 (2014). https://doi.org/10.1007/s11244-013-0175-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0175-2

Keywords

Navigation