Skip to main content
Log in

Rapid Saponification of Fatty Acid Methyl Esters with Aqueous Alkali Hydroxide Solutions Using a Long Narrow Tubular Reactor

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Saponification of various fatty acid methyl esters with an aqueous solution of sodium or potassium hydroxide (NaOH(aq) or KOH(aq)) using a long narrow tubular reactor (TR) was studied at 333 K to elucidate effects of their carbon number on the apparent diffusion constant (k). Saponification by a conventional method, batch-type system (BR), was also studied for comparison with that in the TR. All of the saponification rates obeyed the Nernst diffusion rate equation, and the values of k were determined from their Nernst plots. The values of k in the TR system were more than 500-times larger than those in the BR system. The diffusion constant (D) calculated from k increased with a decrease in carbon number of fatty acid methyl esters. In addition, the value of D was proportional to the reciprocal of viscosity of methyl ester. Moreover, saponification was promoted more by KOH than by NaOH, and the value of D with KOH(aq) was 2.0-times larger than that with NaOH(aq). The two-fold larger value was nearly equal to the radius ratio of potassium ion to hydrated sodium ion. Therefore, it is concluded that viscosity and ion radius contributed predominantly to the diffusion and that the diffusion of hydrated sodium ion to potassium ion was a rate-controlling step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Otani H, Hasegawa T, Watabe N (1993) JP. Patent 171196

  2. Poulenat G, Sentenac S, Mouloungui Z (2004) Ind Eng Chem Res 43:1574

    Article  CAS  Google Scholar 

  3. Zhu S, Heppenstall-Bulter M, Pudney PDA (2005) J Phys Chem B 109:11753

    Article  CAS  Google Scholar 

  4. Liang J, Ma Y, Zheng Y, Ted Davis H (2001) Langmuir 17:6447

    Article  CAS  Google Scholar 

  5. Schott H, Chang Shaw-Lang (1987) J Colloid Interface Sci 117:94

    Article  CAS  Google Scholar 

  6. Peterson GR, Scarrah WP (1984) J Am Oil Chem Soc 61:509

    Article  Google Scholar 

  7. Lee AF, Wilson K (2005) Appl Catal A Gen 287:183

    Article  Google Scholar 

  8. Saka S, Kusdiana D (2001) Fuel 80:225

    Article  CAS  Google Scholar 

  9. Demirbas A (2006) Energy Conv Manage 47:2271

    Article  CAS  Google Scholar 

  10. Madras G, Kolluru C, Kumar R (2004) Fuel 83:2029

    Article  CAS  Google Scholar 

  11. Kusdiana D, Saka S (2001) J Chem Eng Jpn 34:383

    Article  CAS  Google Scholar 

  12. Ebiura T, Echiozenn T, Murai K, Baba T (2005) Appl Catal A Gen 283:111

    Article  CAS  Google Scholar 

  13. Furuta S, Matsubashi H, Arata K (2004) Catal Commun 5:721

    Article  CAS  Google Scholar 

  14. Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, M Hara Nature 178:438

  15. Allen CAW, Watts KC, Ackman RG, Pegg MJ (1998) Fuel 78:1319

    Article  Google Scholar 

  16. Juan S, Jingxi J, Lei J, Lixiong Z, Nanping X (2008) Ind Eng Chem Res 47:1398

    Article  Google Scholar 

  17. Pattekar AV, Kothare MV (2004) J Microelectromech Sys 13:7

    Article  CAS  Google Scholar 

  18. Park GG, Ceo DJ, Park SH, Yoon YG, Kim CS, Yoon WL (2004) Chem Eng J 101:87

    Article  CAS  Google Scholar 

  19. Matsushita Y, Kumada S, Wakabayashi K, Sakeda K, Ichimura T (2006) Chem Lett 35:410

    Article  CAS  Google Scholar 

  20. Sato K, Hibara A, Tokeshi M, Hisamoto H, Kitamori K (2003) Anal Sci 19:15

    Article  CAS  Google Scholar 

  21. Yamashita K, Yamaguchi Y, Miyazaki M, Nakamura H, Shimizu H, Maeda H (2004) Anal Biochem 332:274

    Article  CAS  Google Scholar 

  22. Kamiouji A, Hashimoto K, Kominami H, Ito S (2008) Ind Eng Chem Res 47:1464

    Article  CAS  Google Scholar 

  23. Goto R (1993) Butsurikagaku Jikkenhou. Kyoritsu, Tokyo, p 145

    Google Scholar 

  24. Aida K (2004) JP. Patent 104247

  25. Nakamura M, Koike N, Kumeda J (2004) JP. Patent 210833

  26. Hirota K, Kuwata K (1962) Hannou Sokudogaku. Kyoritsu, Tokyo, p 194

    Google Scholar 

  27. Nernst W (1904) Z Phys Chem 47:523

    Google Scholar 

  28. Hirota K, Kuwata K (1962) Hannou Sokudogaku. Kyoritsu, Tokyo, p 200

    Google Scholar 

  29. Univer DL, Houghton G (1966) Chem Eng Sci 21:999

    Article  Google Scholar 

  30. Alizadeh AA, Wakeham WA (1982) Int J Thermophys 3:307

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Private Universities from the Ministry of Education, Culture, Science, and Technology (MEXT) of Japan. This work was also partly supported by a Grant-in-Aid for Scientific Research (No. 19560773) from MEXT and the Sasakawa Scientific Research Grant from The Japan Science Society. The authors thank Mr. S. Terada, President of Mighty Corporation, for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kominami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamiouji, A., Hashimoto, K., Kominami, H. et al. Rapid Saponification of Fatty Acid Methyl Esters with Aqueous Alkali Hydroxide Solutions Using a Long Narrow Tubular Reactor. Top Catal 52, 795–800 (2009). https://doi.org/10.1007/s11244-009-9238-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9238-9

Keywords

Navigation