Skip to main content
Log in

Preparation, crystal structures and magnetic properties of hetero- and homo-metallic coordination polymers with triazacyclononane derivatives bearing propionic acid pendant arms

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two Cu(II)–Na(I) hetero-metallic coordination polymers [Cu2Na5(tacntp)2(H2O)9](ClO4)3·2H2O (1) and [Cu2Na5(tacntp)2(H2O)9](ClO4)3·2H2O (2) were constructed from Cu(II) salts and a trisubstituted N-propionic acid functionalized ligand, namely 1,4,7-triazacyclononane-1,4,7-tripropionic acid (tacntpH3). In complex 1, the Na+ ions act as nodes, being surrounded by six [Cu(tacntp)] moieties resulting in a 2D coordination polymer. In complex 2, Na+ ions are bridged by pendant carboxylate groups and water ligands to give a 1D Na–O inorganic polymeric ribbon, which is expanded into a complicated 2D hetero-metallic array through the connecting [Cu(tacntp)] units. The differences between the two structures are related to the amount of Na+ ions present in the reaction media. In further experiments, the trisubstituted pro-ligand tacntpH3 underwent a hydrothermal Cu(II)-induced cleavage of one of three pendant arms, and the resultant disubstituted pro-ligand tacndpH2 assembled with Cu(II) to give a 1D homo-metallic zigzag chain compound [Cu(tacndp)]ClO4·H2O (3). Magnetic susceptibility measurements on complex 3 revealed a ferromagnetic interaction between the Cu(II) centers within the 1D chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lattuada L, Barge A, Cravotto G, Giovenzana GB, Tei L (2011) Chem Soc Rev 40:3019–3049

    Article  CAS  Google Scholar 

  2. Viola-Villegas N, Doyle RP (2009) Coord Chem Rev 253:1906–1925

    Article  CAS  Google Scholar 

  3. Bevilacqua A, Gelby RI, Hebard WB, Zompa LJ (1987) Inorg Chem 26:2699–2706

    Article  CAS  Google Scholar 

  4. Zhang S, Merritt M, Woessner DE, Lenkinski RE, Sherry AD (2003) Acc Chem Res 36:783–790

    Article  CAS  Google Scholar 

  5. Delgado R, Félix V, Lima LMP, Price DW (2007) Dalton Trans 26:2734–2745

    Article  Google Scholar 

  6. Stasiuk GJ, Long NJ (2013) Chem Commun 49:2732–2746

  7. Price EW, Orvig C (2014) Chem Soc Rev 43:260–290

    Article  CAS  Google Scholar 

  8. Wang Y, Lang L, Huang P, Wang Z, Jacobson O, Kiesewetter DO, Ali IU, Teng G, Niu G, Chen X (2015) Proc Natl Acad Sci USA 112:208–213

    Article  Google Scholar 

  9. Wadas TJ, Anderson CJ (2006) Nat Protoc 1:3062–3068

    Article  CAS  Google Scholar 

  10. Funk AM, Clavijo Jordan V, Sherry AD, Ratnakar SJ, Kovacs Z (2016) Angew Chem Int Ed 55:5024–5027

    Article  CAS  Google Scholar 

  11. Shi W, Song B, Tan M, Ye Z, Yuan J (2015) RSC Adv 5:96525–96531

    Article  CAS  Google Scholar 

  12. Morfin JF, Tóth É (2011) Inorg Chem 50:10371–10378

    Article  CAS  Google Scholar 

  13. Chang CA, Liu YL, Chen CY, Chou XM (2001) Inorg Chem 40:3448–3455

    Article  CAS  Google Scholar 

  14. Wang S, Westmoreland TD (2009) Inorg Chem 48:719–727

    Article  CAS  Google Scholar 

  15. Scarpellini M, Gätjens J, Martin OJ, Kampf JW, Sherman SE, Pecoraro VL (2008) Inorg Chem 47:3584–3593

    Article  CAS  Google Scholar 

  16. Li QX, Li Q, Chen R, Yang XL, Zhou JY, Xu HB (2010) Inorg Chem Commun 13:1293–1295

    Article  CAS  Google Scholar 

  17. Zhu XD, Lin ZJ, Liu TF, Xu B, Cao R (2012) Cryst Growth Des 12:4708–4711

    Article  CAS  Google Scholar 

  18. Aime S, Barge A, Benetollo F, Bombieri G, Botta M, Uggeri F (1997) Inorg Chem 36:4287–4289

    Article  CAS  Google Scholar 

  19. Riesen A, Zehnder M, Kaden TA (1985) Chem Commun 1336–1338. doi:10.1039/C39850001336

  20. Liu WS, Jiao TQ, Li YZ, Liu QZ, Tan MY, Wang H, Wang LF (2004) J Am Chem Soc 126:2280–2281

    Article  CAS  Google Scholar 

  21. Lecomte C, Dahaoui-Gindrey V, Chollet H, Gros C, Mishra AK, Barbette F, Pullumbi P, Guilard R (1997) Inorg Chem 36:3827–3838

    Article  CAS  Google Scholar 

  22. Chen GJ, Gao FX, Huang FP, Tian JL, Gu W, Liu X, Yan SP, Liao DZ (2009) Cryst Growth Des 9:2662–2667

    Article  CAS  Google Scholar 

  23. Zhang Z, Lu JQ, Wu DF, Chen ZL, Liang FP, Wang ZL (2012) Cryst Eng Commun 14:1354–1363

    Article  CAS  Google Scholar 

  24. Sheldrick GM (1996) SADABS, program for empirical absorption correction of area detector data. University of Göttingen, Göttingen

    Google Scholar 

  25. Sheldrick GM (1997) SHELXS-97, program for X-ray crystal structure solution. University of Gottingen, Göttingen

    Google Scholar 

  26. Sheldrick GM (1997) SHELXL-97, program for X-ray crystal structure refinement. University of Gottingen, Göttingen

    Google Scholar 

  27. Schulz D, Weyhermueller T, Wieghardt K, Butzlaff C, Trautwein AX (1996) Inorg Chim Acta 246:387–394

    Article  CAS  Google Scholar 

  28. Bao SS, Chen GS, Wang Y, Li YZ, Zheng LM, Luo QH (2006) Inorg Chem 45:1124–1129

    Article  CAS  Google Scholar 

  29. Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) Dalton Trans 1349–1356. doi:10.1039/DT9840001349

  30. Benetollo F, Bombieri G, Calabi L, Aime S, Botta M (2003) Inorg Chem 42:148–157

    Article  CAS  Google Scholar 

  31. Fisher ME (1964) Am J Phys 32:343–346

    Article  Google Scholar 

  32. Liu YH, Lee SH, Chiang JC, Chen PC, Chien PH, Yang CI (2013) Dalton Trans 42:16857–16867

    Article  CAS  Google Scholar 

  33. Kreher U, Hearn MTW, Moubaraki B, Murray KS, Spiccia L (2007) Polyhedron 26:3205–3216

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21361004), the Guangxi Natural Science Foundation of China (Grant No. 2014GXNSFAA118044), the Natural Science Foundation of Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Ministry of Education of China (CMEMR 2012-A08, CMEMR2013-C08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Zhang or Yong-Zhi Liao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 754 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Tang, Q., Feng, YF. et al. Preparation, crystal structures and magnetic properties of hetero- and homo-metallic coordination polymers with triazacyclononane derivatives bearing propionic acid pendant arms. Transit Met Chem 42, 41–50 (2017). https://doi.org/10.1007/s11243-016-0104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-016-0104-x

Keywords

Navigation