Skip to main content
Log in

Structures and enhanced third-order nonlinear optical performance of four complexes investigated by thin film Z-scan technique

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Four transition metal complexes have been synthesized via hydrothermal reactions, namely, [Zn(1,3-BIB)(CH3COO)2]2 1, [Cu2(1,4-BIB)3(CO3)2](1,4-BIB)·10H2O 2, {[Mn(H2O)2(1,2-BIB)2]Cl2}n 3, and {[Mn(1,2-BIB)(1,4-NDC)]2}n 4, where 1,n-BIB = 1,n-bis(imidazol-l-yl-methyl)benzene, n = 2, 3, 4 and 1,4-NDC = naphthalene-1,4-dicarboxylic acid. Complex 1 presents a discrete ring-like structure. Complex 2 shows a ladder-like chain structure, while complex 3 has a joint-like chain structure. Complex 4 features a layer structure constructed from [Mn2(N4O8)] clusters. The third-order nonlinear optical (NLO) properties of these complexes in thin films have been investigated by employing the Z-scan technique. Complexes 13 exhibit strong third-order NLO reverse-saturable absorption, while 4 shows third-order NLO saturable absorption and a strong self-defocusing effect. The third-order NLO susceptibilities χ (3) of the four complexes were calculated as 2.74 × 10−9, 12.24 × 10−9, 42.78 × 10−9 and 189.32 × 10−9 esu, respectively. The electronic structures of the complexes were investigated by density functional theory, and the origins of their NLO properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barea E, Montoro C, Navarro JAR (2014) Chem Soc Rev 43:5419–5430

    Article  CAS  Google Scholar 

  2. He YB, Zhou W, Qian GD, Chen BL (2014) Chem Soc Rev 43:5657–5678

    Article  CAS  Google Scholar 

  3. Dhakshinamoorthy A, Garcia H (2014) Chem Soc Rev 43:5750–5765

    Article  CAS  Google Scholar 

  4. Hu ZC, Deibert BJ, Li J (2014) Chem Soc Rev 43:5815–5840

    Article  CAS  Google Scholar 

  5. Qin JH, Ma LF, Hu Y, Wang LY (2012) CrystEngComm 14:2891–2898

    Article  CAS  Google Scholar 

  6. Song XZ, Song SY, Qin C, Su SQ, Zhao SN, Zhu M, Hao ZM, Zhang HJ (2012) Cryst Growth Des 12:253–263

    Article  CAS  Google Scholar 

  7. Du P, Yang Y, Yang J, Liu YY, Kan WQ, Ma JF (2013) CrystEngComm 15:6986–7002

    Article  CAS  Google Scholar 

  8. Fan LM, Zhang XT, Sun Z, Zhang W, Ding YS, Fan WL, Sun LM, Zhao X, Lei H (2013) Cryst Growth Des 13:2462–2475

    Article  CAS  Google Scholar 

  9. Luo L, Chen K, Liu Q, Lu Y, Okamura TA, Lv GC, Zhao Y, Sun WY (2013) Cryst. Growth Des 13:2312–2321

    Article  CAS  Google Scholar 

  10. Feng M, Zhang H, Chen Y (2010) Appl Phys Lett 96:033107

    Article  Google Scholar 

  11. Heck J, Dabek S, Meyer-Friedrichsen T, Wong H (1999) Coord Chem Rev 190–192:1217–1254

    Article  Google Scholar 

  12. Green KA, Cifuentes MP, Samoc M, Humphrey MG (2011) Coord Chem Rev 255:2530–2541

    Article  CAS  Google Scholar 

  13. Hou HW, Song YL, Fan YT, Zhangf LP, Du CX, Zhu Y (2001) Inorg Chim Acta 316:140–144

    Article  CAS  Google Scholar 

  14. Zhou W, Meng XR, Ding YN, Li WQ, Hou HW, Song YL, Fan YT (2009) J Mol Struct 937:100–106

    Article  CAS  Google Scholar 

  15. Xu H, Song YL, Meng XR, Hou HW, Fan YT (2012) J Appl Polym Sci 125:682–689

    Article  CAS  Google Scholar 

  16. Hou HW, Meng XR, Song YL, Fan YT, Zhu Y, Lu HJ, Du CX, Shao WH (2002) Inorg Chem 41:4068–4075

    Article  CAS  Google Scholar 

  17. Hou HW, Wei YL, Song YL, Mi LW, Tang MS, Li LK, Fan YT (2005) Angew Chem 117:6221–6228

    Article  Google Scholar 

  18. Zhang C, Song YL, Wang X (2007) Coord Chem Rev 251:111–141

    Article  CAS  Google Scholar 

  19. Zhang WH, Liu Q, Lang JP (2015) Coord Chem Rev 293–294:187–210

    Article  Google Scholar 

  20. Li SL, Lan YQ, Ma JF, Yang J, Wei GH, Zhang LP, Su ZM (2008) Cryst Growth Des 8:675–684

    Article  CAS  Google Scholar 

  21. Sheldrick GM (2015) Acta Cryst A71:3–8

    Google Scholar 

  22. Zhao N, Deng YE, Liu P, An CX, Wang TX, Lian ZX (2015) Polyhedron 85:607–614

    Article  CAS  Google Scholar 

  23. Yang J, Ma JF, Liu YY, Ma JC, Batten SR (2008) Cryst Growth Des 8:4383–4393

    Article  CAS  Google Scholar 

  24. Zhao Y, Chang XH, Liu GZ, Ma LF, Wang LY (2015) Cryst Growth Des 15:966–974

    Article  CAS  Google Scholar 

  25. Liu YY, Ma JC, Zhang LP, Ma JF (2008) J Coord Chem 61:3583–3593

    Article  CAS  Google Scholar 

  26. Liu YY, Ma JF, Yang J, Su ZM (2007) Inorg Chem 46:3027–3037

    Article  CAS  Google Scholar 

  27. Hou HW, Song YL, Xu H, Wei YL, Fan YT, Zhu Y, Li LK, Du CX (2003) Macromolecules 36:999–1008

    Article  CAS  Google Scholar 

  28. Cassano T, Tommasi F, Badubri A, Cardone GM, Farinola F (2002) Opt Lett 27(2176):2178

    Google Scholar 

  29. Kiran AJ, Mithun A, Holla BS, Shashikala HD, Umesh G, Chandrasekharan K (2007) Opt Commun 269:235–240

    Article  CAS  Google Scholar 

  30. Brédas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Chem Rev 4:243–278

    Article  Google Scholar 

  31. Gaussian 09, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts, Stratmann RE, Yazyev O, Austin AG, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, DapprichS, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, and Fox DJ, Gaussian, Inc., Wallingford CT, 2009

  32. Lu T, Chen FW (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by Natural Science Fund Project of Education Department of Henan Province (Nos. 14A150023 and 15A110048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxun Lian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Zhao, N., Yang, F. et al. Structures and enhanced third-order nonlinear optical performance of four complexes investigated by thin film Z-scan technique. Transit Met Chem 41, 721–730 (2016). https://doi.org/10.1007/s11243-016-0074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-016-0074-z

Keywords

Navigation