Skip to main content
Log in

Selective coupling of carbon dioxide and epoxystyrene via salicylaldimine-, thiophenaldimine-, and quinolinaldimine-iron(II), iron(III), chromium(III), and cobalt(III)/Lewis base catalysts

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A series of chromium(III)-, cobalt(III)-, and iron(III)-based complexes of the general formula [(NO)2MCl] (1–7) (NO: N-salicylidene(R)amine, R = 1-naphthyl or cyclohexyl) have been applied as catalysts for the coupling reaction of carbon dioxide and epoxystyrene (styrene oxide) in the presence of tetrabutylammonium bromide (Bu4NBr) as a cocatalyst. The reactions were carried out under relatively low pressure and solvent-free conditions. In addition, iron complexes (810) containing the ligands, N′-(thiophene-2-methylene)benzene-1,2-diamine, (8), N′-(quinoline-2-methylene)benzene-1,2-diamine (9), and sodium N-(4-sulfonato-salicylidene)-1,2-phenylenediamine (10) were also utilized for the catalytic reaction. The influence of metal center, ligand, temperature, and reaction time on the coupling reaction was investigated. The catalyst systems proved to be selective in the coupling reaction of CO2 and styrene oxide, resulting in cyclic styrene carbonate. In general, the iron(III)- and cobalt(III)-based catalysts bearing the aromatic 1-naphthyl terminal groups showed the highest catalytic activity under similar reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gross RA, Kalra B (2002) Science 297:803

    Article  CAS  Google Scholar 

  2. Okada M (2002) Prog Polym Sci 27:87

    Article  CAS  Google Scholar 

  3. Danner H, Braun R (1999) Chem Soc Rev 28:395

    Article  CAS  Google Scholar 

  4. Cooper AI (2000) J Mater Chem 10:207

    Article  CAS  Google Scholar 

  5. Bolm C, Beckmann O, Dabard OAG (1999) Angew Chem Int Ed 38:907

    Article  CAS  Google Scholar 

  6. Musie G, Wei M, Subramaniam B, Busch DH (2001) Coord Chem Rev 219:789

    Article  Google Scholar 

  7. Leitner W (1996) Coord Chem Rev 153:257

    Article  CAS  Google Scholar 

  8. Leitner W (1995) Angew Chem Int Ed Engl 34:2207

    Article  CAS  Google Scholar 

  9. Shi M, Shen YM (2003) Curr Org Chem 7:737

    Article  CAS  Google Scholar 

  10. Yin X (1999) JMoss JR. Coord Chem Rev 18:1–27

    Google Scholar 

  11. Behr A (1988) Carbon dioxide activation by metal complexes. VCH, Weinheim

    Google Scholar 

  12. Gibson DH (1996) Chem Rev 96:2063

    Article  CAS  Google Scholar 

  13. Jessop PG, Ikariya T, Noyori R (1999) Chem Rev 99:475

    Article  CAS  Google Scholar 

  14. Kendall JL, Canelas DA, Young JL, DeSimone JM (1999) Chem Rev 99:543

    Article  CAS  Google Scholar 

  15. Inoue S (1976) ChemTech 6:588

    CAS  Google Scholar 

  16. Darensbourg DJ, Holtcamp MW (1996) Coord Chem Rev 153:155

    Article  CAS  Google Scholar 

  17. Beckman EJ (1999) Science 283:946

    Article  CAS  Google Scholar 

  18. Darensbourg DJ (2007) Chem Rev 107:2388

    Article  CAS  Google Scholar 

  19. Klaus S, Lehenmeier MW, Anderson CE, Rieger B (2011) Coord Chem Rev 255:1460

    Article  CAS  Google Scholar 

  20. Coates GW, Moore DR (2004) Angew Chem Int Ed 43:6618

    Article  CAS  Google Scholar 

  21. KemberMR Buchard A, Williams CK (2011) Chem Commun 47:141

    Article  Google Scholar 

  22. Decortes A, Castilla AM, Kleij AW (2010) Angew Chem Int Ed 49:9822

    Article  CAS  Google Scholar 

  23. Pang H, Liao B, Huang YH, Cong GM (2001) Chin J Appl Chem 18:347

    CAS  Google Scholar 

  24. Thorat SD, Phillips PJ, Semenov V, Gakh A (2003) J Appl Polym Sci 89:1163

    Article  CAS  Google Scholar 

  25. Peng SM, An Y, Chen C, Fei B, Zhuang Y, Dong L (2003) Polym Degrad Stab 80:141

    Article  CAS  Google Scholar 

  26. Liu B, Chen L, Zhang M, Yu A (2002) Macromol Rapid Commun 23:881

    Article  CAS  Google Scholar 

  27. Wang SJ, Du LC, Zhao XS, Meng YZ, Tjong SC (2002) J Appl Polym Sci 85:2327

    Article  CAS  Google Scholar 

  28. Wu X-M, Sun W, Xin J-Y, Xia C-G (2008) World J Microbiol Biotechnol 24:2421

    Article  CAS  Google Scholar 

  29. Srivastava R, Srinivas D, Ratnasamy P (2006) J Catal 241:34

    Article  CAS  Google Scholar 

  30. Shaikh AA-G, Sivaram S (1996) Chem Rev 96:951

    Article  CAS  Google Scholar 

  31. Chen S-W, Kawthekar RB, Kim G-J (2007) Tetrahedron Lett 48:297

    Article  CAS  Google Scholar 

  32. Paddock RL, Hiyama Y, Mckay JM, Nguyen ST (2004) Tetrahedron Lett 45:2023

    Article  CAS  Google Scholar 

  33. Darensbourg DJ, Mackiewicz RM (2005) J Am Chem Soc 127:14026

    Article  CAS  Google Scholar 

  34. Cohen CT, Chu T, Coates GW (2005) J Am Chem Soc 127:10869

    Article  CAS  Google Scholar 

  35. Bu Z, Wang Z, Yang L, Cao S (2011) App Organomet Chem 24:813

    Article  Google Scholar 

  36. Decortes A, Belmonte MM, Benet-Buchholz J, Kleij AW (2010) Chem Commun 46:4580

    Article  CAS  Google Scholar 

  37. Fujita S, Nishiura M, Arai M (2010) Catal Lett 135:263

    Article  CAS  Google Scholar 

  38. Meléndez J, North M, Villuendas P (2009) Chem Commun 18:2577

  39. North M, Pasquale R (2009) Angew Chem Int Ed 48:2946

    Article  CAS  Google Scholar 

  40. Lu XB, Zhang Y-J, Liang B, Li X, Wang H (2004) J Mol Catal A Chem 210:31

    Article  CAS  Google Scholar 

  41. Luinstra GA, Haas GR, Molnar F, Bernhart V, Eberhardt R, Rieger B (2005) Chem Eur J 11:6298

    Article  CAS  Google Scholar 

  42. Jing H, Edulji SK, Gibbs JM, Stern CL, Zhou H, Nguyen ST (2004) Inorg Chem 43:4315

    Article  CAS  Google Scholar 

  43. Sibaouih A, Ryan P, Axenov KV, Sundberg MR, Leskelä M, Repo T (2009) J Mol Cat A Chem 312:87

    Article  CAS  Google Scholar 

  44. Kember MR, White AJP, Williams CK (2010) Macromolecules 43:2291

    Article  CAS  Google Scholar 

  45. Buchard A, Kember MR, Sandeman K, Williams CK (2010) Chem Commun 46:4580

    Article  Google Scholar 

  46. Dengler JE, Lehenmeier MW, Klaus S, Anderson CE, Herdtweck E, Rieger B (2011) Eur J Inorg Chem 2011(3):336

  47. Abu-Surrah AS, Ak Qaroush (2007) Eur Polym J 43:2967

    Article  CAS  Google Scholar 

  48. Abu-Surrah AS, Abdel-Halim AM, Al-Qaisi FM (2008) Z Naturforsch 63b:848

    Google Scholar 

  49. Abu-Surrah AS, Ibrahim KA, Abdel-Halim HM (2009) Trans metal Chem 34:803

    Article  CAS  Google Scholar 

  50. Wu G-P, Wei S-H, Lu X-B, Ren W-M, Darensbourg DJ (2010) Macromolecules 43:9202

    Article  CAS  Google Scholar 

  51. Darensbourg DJ, Fitch SB (2008) Inorg Chem 47:11868

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Hashemite University and the German research Foundation (DFG) is gratefully acknowledged. We also would like to thank Prof. Dr. Dr. h. c. Bernhard Rieger, WACKER-Lehrstuhl für Makromolekulare Chemie, Department Chemie, Technische, Universität München for the helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan S. Abu-Surrah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunjuk, M., Abu-Surrah, A.S., Al-Ramahi, E. et al. Selective coupling of carbon dioxide and epoxystyrene via salicylaldimine-, thiophenaldimine-, and quinolinaldimine-iron(II), iron(III), chromium(III), and cobalt(III)/Lewis base catalysts. Transition Met Chem 38, 253–257 (2013). https://doi.org/10.1007/s11243-012-9685-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9685-1

Keywords

Navigation