Skip to main content
Log in

Two new 2D copper(II) complexes constructed from a flexible bis-pyridyl-bis-amide ligand and two aromatic tricarboxylates: syntheses, crystal structures, fluorescence, and electrochemical properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two new 2D metal-organic complexes, namely [Cu(3-dpyb)(1,2,4-HBTC)(H2O)]·H2O (1) and [Cu3(3-dpyb)3(SIP)2(H2O)8]·6H2O (2) [3-dpyb = N,N’-bis(3-pyridinecarboxamide)-1,4-butane, 1,2,4-H3BTC = 1,2,4-benzenetricarboxylic acid, H3SIP = 5-sulfoisophthalic acid], have been hydrothermally synthesized and structurally characterized by elemental analyses, IR, TG, and single crystal X-ray diffraction analyses. Single crystal X-ray analyses reveal that the two Cu(II) complexes show different 2D coordination networks, the 4-connected (44·62) topology for complex 1 and the (4·62)2(42·62·82) topology for complex 2. In the 2D layers of complexes 1 and 2, the 3-dpyb ligands adopt a typical μ 2-bridging mode (via ligation of two pyridyl nitrogen atoms), while 1,2,4-HBTC and SIP serve as a linear spacer and a ‘V’-like linker, respectively, to connect the adjacent Cu(II) centers. The adjacent 2D layers are extended to 3D supramolecular networks via hydrogen-bonding interactions. The fluorescence properties of both complexes and electrochemical properties of complex 2 have also been investigated. The complex 2 bulk-modified carbon paste electrode (2-CPE) displayed a one-electron redox wave in potential range of 600–200 mV in 1 M H2SO4 aqueous solution, and 2-CPE showed good electrocatalytic activity toward the reduction of nitrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rieth S, Baddeley C, Badjić J (2007) Soft Matter 3:137–154

    Article  CAS  Google Scholar 

  2. Tzeng BC, Chen BS, Yeh HT, Lee GH, Peng SM (2006) New J Chem 30:1087–1092

    Article  CAS  Google Scholar 

  3. Ni J, Wei KJ, Min YZ, Chen YW, Zhan SZ, Li D, Liu YZ (2012) Dalton Trans 41:5280–5293

    Article  CAS  Google Scholar 

  4. Yeşilel OZ, Günay G, Darcan C, Soylu MS, Keskin S, Ng SW (2012) CrystEngComm 14:2817–2825

    Article  Google Scholar 

  5. Li JB, Dong XY, Cao LH, Zang SQ, Mak TW (2012) CrystEngComm 14:4444–4453

    Article  CAS  Google Scholar 

  6. Cardellicchio C, Capozzi MA, Alvarez-Larena A, Piniella JF, Capitelli F (2012) CrystEngComm 14:3972–3981

    Article  CAS  Google Scholar 

  7. Gua SJ, Huang JJ, Liu X, Liu HT, Zhou YS, Xu WL (2012) Inorg Chem Commun 21:168–172

    Article  Google Scholar 

  8. Cui YF, Sun PP, Chen Q, Li BL, Li HY (2012) CrystEngComm 14:4161–4164

    Article  CAS  Google Scholar 

  9. Zhang Y, Liu XG, Wang LY, Ding JG, Li BL (2012) Inorg Chem Commun 21:76–79

    Article  Google Scholar 

  10. Chakrabarty R, Mukherjee PS, Stang PJ (2011) Chem Rev 111:6810–6918

    Article  CAS  Google Scholar 

  11. Zhang KL, Hou CT, Song JJ, Deng Y, Li L, Ng SW, Diao GW (2012) CrystEngComm 14:590–600

    Article  CAS  Google Scholar 

  12. Liu FJ, Sun D, Hao HJ, Huang RB, Zheng LS (2012) CrystEngComm 14:379–382

    Article  CAS  Google Scholar 

  13. Sun HX, Xie WL, Lv SH, Xu Y, Wu Y, Zhou YM, Ma ZM, Fang M, Liu HK (2012) Dalton Trans 41:7590–7594

    Article  CAS  Google Scholar 

  14. Zhao XL, Zhang LL, Ma HQ, Sun D, Wang DX, Feng SY, Sun DF (2009) RSC Adv 2:5543–5549

    Article  Google Scholar 

  15. Li CP, Yu Q, Chen J, Du M (2010) Cryst Growth Des 10:2650–2660

    Article  CAS  Google Scholar 

  16. Fang HC, Zhu JQ, Zhou LJ, Jia HY, Li SS, Gong X, Li SB, Cai YP, Thallapally P, Liu J, Exarhos G (2010) Cryst Growth Des 10:3277–3284

    Article  CAS  Google Scholar 

  17. Liu QY, Yuan DQ, Xu L (2007) Cryst Growth Des 7:1832–1843

    Article  CAS  Google Scholar 

  18. Su Z, Fan J, Okamura TA, Sun WY, Ueyama N (2010) Cryst Growth Des 10:3515–3521

    Article  CAS  Google Scholar 

  19. Muthu S, Yip JHK, Vittal JJ (2001) J Chem Soc, Dalton Trans 3577–3584

  20. Muthu S, Yip JHK, Vittal JJ (2002) J Chem Soc, Dalton Trans 4561–4568

  21. Sheldrick GM (2008) Acta Crystallogr Sect A: Found Crystallogr 64:112–122

    Article  Google Scholar 

  22. Lin HY, Hu HL, Wang XL, Mu B, Li J (2010) J Coord Chem 63:1295–1303

    Article  CAS  Google Scholar 

  23. Yam VW, Lo KK (1999) Chem Soc Rev 28:323–334

    Article  CAS  Google Scholar 

  24. Wang XL, Zhang JX, Liu GC, Lin HY, Chen YQ, Kang ZH (2011) Inorg Chim Acta 368:207–215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The supports of the National Natural Science Foundation of China (No. 20871022, 21171025), New Century Excellent Talents in University (NCET-09-0853), and the Natural Science Foundation of Liaoning Province (No. 201102003 and 2009402007) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Li Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, QL., Luan, J., Wang, XL. et al. Two new 2D copper(II) complexes constructed from a flexible bis-pyridyl-bis-amide ligand and two aromatic tricarboxylates: syntheses, crystal structures, fluorescence, and electrochemical properties. Transition Met Chem 37, 713–719 (2012). https://doi.org/10.1007/s11243-012-9642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9642-z

Keywords

Navigation