Skip to main content
Log in

Effects of Particle Size Non-Uniformity on Transport and Retention in Saturated Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Short-pulse injection experiments are investigated to study the effects of particle size non-uniformity on the transport and retention in saturated porous media. Monodisperse particles (3, 10, and 16 \(\upmu \hbox {m}\) latex microspheres) and polydisperse particles (containing 3, 10, and 16 latex microspheres) were explored. The obtained results suggest considering not only the particle sizes but also their polydispersivity (particle size non-uniformity) in transport and retention. Although, the density of the suspended particles is close to that of water, results reveal a slow transport of particles compared to the dissolved tracer whatever their size and flow velocity. The recovered particles in the mixture experiments show that the retention of large particles (10 and 16 \(\upmu \hbox {m}\)) enhances the retention of small ones (3 \(\upmu \hbox {m}\)). However, the straining of 10 and 16 \(\upmu \hbox {m}\) particles in “mixture experiments” is smaller than their straining in “monodisperse experiments”. A linear relationship summarizing the simultaneous effect of particle sizes and flow velocity on deposition kinetics coefficient is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahfir, N.-D., Hammadi, A., Alem, A., Wang, H.-Q., Le Bras, G., Ouahbi, T.: Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles. J. Environ. Sci. (2016). doi:10.1016/j.jes.2016.01.032

    Google Scholar 

  • Ahfir, N.D., Benamar, A., Alem, A., Wang, H.-Q.: Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study. Transp. Porous Media 76(2), 289–307 (2009)

    Article  Google Scholar 

  • Aim, R.B., Vigneswaran, S., Prasanthi, H., Jegatheesan, V.: Influence of particle size and size distribution in granular bed filtration and dynamic microfiltration. Water Sci. Technol. 36, 207–215 (1997)

    Google Scholar 

  • Alem, A., Elkawafi, A., Ahfir, N.-D., Wang, H.: Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects. Hydrogeol. J. 21(3), 573–586 (2013)

    Article  Google Scholar 

  • Auset, M., Keller, A.: Pore-scale processes that control dispersion of colloids in saturated porous media. Water Resour. Res. 40(12), W03503 (2004)

    Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  • Benamar, A., Wang, H.-Q., Ahfir, N.-D., Alem, A., Masséi, N., Dupont, J.-P.: Flow velocity effects on the transport and the deposition rate of suspended particles in a saturated porous medium. C. R. Geosci. 337, 497–504 (2005)

    Article  Google Scholar 

  • Bennacer, L., Ahfir, N.D., Bouanani, A., Alem, A., Wang, H.-Q.: Suspended particles transport and deposition in saturated granular porous medium: particle size effects. Transp. Porous Media 100(3), 377–392 (2013)

    Article  Google Scholar 

  • Bonelli, S., Brivois, O., Borghi, R., Benahmed, N.: On the modelling of piping erosion. C. R. Mecanique 334, 555–559 (2006)

    Article  Google Scholar 

  • Bradford, S.A., Simunek, J., Bettahar, M., Van Genuchten, M.T., Yates, S.R.: Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ. Sci. Technol. 37(10), 2242–2250 (2003)

    Article  Google Scholar 

  • Bradford, S.A., Torkzaban, S., Walker, S.L.: Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res. 41, 3012–3024 (2007)

    Article  Google Scholar 

  • Bradford, S.A., Yates, S.R., Bettahar, M., Simunek, J.: Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour. Res. 38(12), 1–12 (2002)

    Article  Google Scholar 

  • Brow, C.N., Li, X., Rička, J., Johnson, W.P.: Comparison of microsphere deposition in porous media versus simple shear systems. Coll. Surf. A Physicochem. Eng. Asp. 253(1–3), 125–136 (2005)

    Article  Google Scholar 

  • Chen, H., Gao, B., Li, H., Ma, L.Q.: Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. J. Contam. Hydrol. 126(1–2), 29–36 (2011)

    Article  Google Scholar 

  • Chen, X.X., Bai, B.: Experimental investigation and modeling of particulate transportation and deposition in vertical and horizontal flows. Hydrogeol. J. 23(2), 365–375 (2015). doi:10.1007/s10040-014-1205-2

    Article  Google Scholar 

  • Chrysikopoulos, C.V., Katzourakis, V.E.: Colloid particle size-dependent dispersivity. Water Resour. Res. 51(6), 4668–4683 (2015)

    Article  Google Scholar 

  • Clark, L.A., Wynn, T.M.: Methods for determining streambank critical shear stress and soil erodibility: implications for erosion rate predictions. Trans. ASABE 50(1), 95–106 (2007)

    Article  Google Scholar 

  • Derjaguin, B., Landau, L.: Theory of the stability of strongly charged lyophobicsols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim. 14, 633–662 (1941)

    Google Scholar 

  • Elimelech, M., Gregory, J., Jia, X., Williams, R.A.: Particle Deposition and Aggregation: Measurement, Modeling, and Simulation. Butterworth-Heinemann, Oxford (1995)

    Google Scholar 

  • Foppen, J.W.A., Mporokoso, A., Schijven, J.F.: Determining straining of Escherichia coli from breakthrough curves. J. Contam. Hydrol. 76(3–4), 191–210 (2005)

    Article  Google Scholar 

  • Grolimund, D., Elimelech, M., Borkovec, M., Barmettler, K., Kretzschmar, R., Sticher, H.: Transport of in situ mobilized colloidal particles in packed soil columns. Environ. Sci. Technol. 32(22), 3562–3569 (1998)

    Article  Google Scholar 

  • Herzig, J.P., Leclerc, D.M., Le Goff, P.: Flow of suspension through porous media: application to deep bed filtration. Ind. Eng. Chem. 62, 8–35 (1970)

    Article  Google Scholar 

  • James, S.C., Chrysikopoulos, C.V.: Analytical solutions for monodisperse and polydisperse colloid transport in uniform fractures. Coll. Surf. A Physicochem. Eng. Asp. 226, 101–118 (2003)

    Article  Google Scholar 

  • James, S.C., Bilezikjian, T.K., Chrysikopoulos, C.V.: Contaminant transport in a fracture with spatially variable aperture in the presence of monodisperse and polydisperse colloids. Stoch. Environ. Res. Risk Assess. 19(4), 266–279 (2005)

    Article  Google Scholar 

  • James, S.C., Chrysikopoulos, C.V.: Monodisperse and polydisperse colloid transport in water-saturated fractures with various orientations: gravity effects. Adv. Water Resour. 34, 1249–1255 (2011)

    Article  Google Scholar 

  • Johnson, W.P., Li, X., Assemi, S.: Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Adv. Water Resour. 30(6–7), 1432–1454 (2007)

    Article  Google Scholar 

  • Kretzschmar, R., Barmettler, K., Grolimund, D., Yan, Y.-D., Borkovec, M., Sticher, H.: Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour. Res. 33(5), 1129 (1997)

    Article  Google Scholar 

  • Kretzschmar, R., Borkovec, M., Grolimund, D., Elimelech, M.: Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 66, 121–193 (1999)

    Article  Google Scholar 

  • Lee, J., Koplik, J.: Network model for deep bed filtration. Phys Fluids 13, 1076–1086 (2001)

    Article  Google Scholar 

  • Masséi, N., Lacroix, M., Wang, H.Q., Dupont, J.P.: Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters. J. Contam. Hydrol. 57(1–2), 21–39 (2002)

    Article  Google Scholar 

  • McCarthy, J.F., McKay, L.D.: Colloid transport in the subsurface: past, present, and future challenges. Vadose Zone J. 3, 326–337 (2004)

    Google Scholar 

  • McDowell-Boyer, L.M., Hunt, J.R., Sitar, N.: Particle transport through porous media. Water Resour. Res. 22, 1901–1921 (1986)

    Article  Google Scholar 

  • Mesticou, Z., Kacem, M., Dubujet, P.: Coupling effects of flow velocity and ionic strength on the clogging of a saturated porous medium. Transp. Porous Media 112(1), 265–282 (2016)

    Article  Google Scholar 

  • Moghadasi, J., Müller-Steinhagen, H., Jamialahmadi, M., Sharif, A.: Model study on the kinetics of oil field formation damage due to salt precipitation from injection. J. Pet. Sci. Eng. 43(3–4), 201–217 (2004)

    Article  Google Scholar 

  • Pfannkuch, H.O.: Contribution à l’étude des déplacements de fluides miscibles dans un milieu poreux. Revue Française de l’institut du Pétrole 18, 215–270 (1963)

    Google Scholar 

  • Porubcan, A., Xu, S.: Colloid straining within saturated heterogeneous porous media. Water Res. 45(4), 1796–1806 (2011)

    Article  Google Scholar 

  • Raychoudhury, T., Tufenkji, N., Ghoshal, S.: Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Water Res. 50, 80–89 (2014)

    Article  Google Scholar 

  • Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. Coll. Surf. A Physicochem. Eng. Asp. 107(95), 1–56 (1996)

    Article  Google Scholar 

  • Sadiq, R., Husain, T., Al-Zahrani, A.M., Sheikh, A.K., Farooq, S.: Secondary effluent treatment by slow sand filters: performance and risk analysis. Water Air Soil Pollut. 143, 41–63 (2003)

    Article  Google Scholar 

  • Sefrioui, N., Ahmadi, A., Omari, A., Bertin, H.: Numerical simulation of retention and release of colloids in porousmedia at the pore scale. Coll. Surf. A: Physicochem. Eng. Asp. 427, 33–40 (2013)

    Article  Google Scholar 

  • Sen, T.K., Khilar, K.C.: Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Coll. Interface Sci. 119(2–3), 71–96 (2006)

    Google Scholar 

  • Sen, T.K., Mahajan, S.P., Khilar, K.C.: Colloid-Associated contaminant transport in porous media: 1 Experimental studies. AIChE J. 48(10), 2366–2374 (2002)

    Article  Google Scholar 

  • Sjödahl, P., Dahlin, T., Johansson, S., Loke, M.H.: Resistivity monitoring for leakage and internal erosion detection at Hällby embankment dam. J. Appl. Geophys. 65(3–4), 155–164 (2008)

    Article  Google Scholar 

  • Syngouna, V.I., Chrysikopoulos, C.V.: Transport of biocolloids in water saturated columns packed with sand: Effect of grain size and pore water velocity. J. Contam. Hydrol. 126, 301–314 (2011)

    Article  Google Scholar 

  • Syngouna, V.I., Chrysikopoulos, C.V.: Cotransport of clay colloids and viruses in water saturated porous media. Coll. Surf. A Physicochem. Eng. Asp. 416, 56–65 (2013)

    Article  Google Scholar 

  • Tong, M., Johnson, W.P.: Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity. Environ. Sci. Technol 40, 7725–7731 (2006)

    Article  Google Scholar 

  • Torkzaban, S., Kim, H.N., Simunek, J., Bradford, S.A.: Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry. Environ. Sci. Technol. 44(5), 1662–1669 (2010)

    Article  Google Scholar 

  • Tosco, T., Sethi, R.: Transport of non-Newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: A modeling approach. Environ. Sci. Technol. 44(23), 9062–9068 (2010)

    Article  Google Scholar 

  • Verwey, E.J.W., Overbeek, J.T.H.G.: Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam (1948)

    Google Scholar 

  • Walshe, G.E., Pang, L., Flury, M., Close, M.E., Flintoft, M.: Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Res. 44(4), 1255–1269 (2010)

    Article  Google Scholar 

  • Wang, H.Q., Lacroix, M., Masséi, N., Dupont, J.-P.: Particle transport in a porous medium: determination of hydrodispersive characteristics and deposition rates. C. R. Acad. Sci. Paris Earth Planet. Sci. 331, 97–104 (2000)

    Google Scholar 

  • Xu, S.P., Liao, Q., Saiers, J.E.: Straining of nonspherical colloids in saturated porous media. Environ. Sci. Technol. 42, 771–778 (2008)

    Article  Google Scholar 

  • Xu, S.P., Saiers, J.E.: Colloid straining within water-saturated porous media: effects of colloid size nonuniformity. Water Resour. Res. 45, W05501 (2009)

    Article  Google Scholar 

  • Xu, S., Gao, B., Saiers, J.E.: Straining of colloidal particles in saturated porous media. Water Resour. Res. 42(12), 1–10 (2006)

    Article  Google Scholar 

  • You, Z., Badalyan, A., Bedrikovetsky, P.: Size-exclusion colloidal transport in porous media: stochastic modeling and experimental study. Soc. Pet. Eng. 18(4), 620–633 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Région Haute Normandie_R2014-CPER-0094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasre-Dine Ahfir.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 325 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammadi, A., Ahfir, ND., Alem, A. et al. Effects of Particle Size Non-Uniformity on Transport and Retention in Saturated Porous Media. Transp Porous Med 118, 85–98 (2017). https://doi.org/10.1007/s11242-017-0848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0848-6

Keywords

Navigation