Skip to main content
Log in

Gas Evacuation from Partially Saturated Woven Fiber Laminates

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Gas evacuation from a partially saturated composite prepregs—a woven fabric reinforcement with a laminated liquid resin film—was characterized using the pulse-decay method. Dimensionless analysis was used to show how the initial pressure, boundary conditions (vacuum pressure at \(x=0\) and with or without a reservoir volume at \(x=L\)), and Klinkenberg parameter effect the predicted decay of gas pressure. By comparing the experimental data to a set of dimensionless master curves, the intrinsic permeability, Klinkenberg parameter, and porosity were determined. Resin saturation was inferred by monitoring the area of resin saturating the initially dry side of the fabric. By mapping the gas flow parameters to the observed area fraction of resin, a complete and repeatable characterization method is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Acheson, J.A., Simacek, P., Advani, S.G.: The implications of fiber compaction and saturation on fully coupled VARTM simulation. Compos. Part A: Appl. Sci. Manuf. 35(2), 159–169 (2004)

    Article  Google Scholar 

  • Ahn, K.J., Seferis, J.C., Price, J.O., Berg, A.J.: Permeation measurements through prepreg laminates. Sampe J. 27(6), 19–26 (1991)

    Google Scholar 

  • Arafath, A.R.A., Fernlund, G., Poursartip, A.: Gas transport in prepregs: model and permeability experiments. In: International Conference on Composite Materials 17. Edinburgh (2009)

  • Bear, J.: Dynamics of Fluids in Porous Media. Courier Corporation, Chelmsford, MA (1972)

    Google Scholar 

  • Bourbie, T., Coussy, O., Zinszner, B.: Acoustics of Porous Media. Gulf Publishing Company, Houston (1987)

    Google Scholar 

  • Brace, W.F., Walsh, J.B., Frangos, W.T.: Permeability of granite under high pressure. J. Geophys. Res. 73(6), 2225–2236 (1968)

    Article  Google Scholar 

  • Brooks, R. H., Corey, A. T.: Hydraulic properties of porous media. In: Hydrology Papers 3. Colorado State University (1964)

  • Carman, P.C.: Fluid flow through granular beds. Chem. Eng. Res. Des. 15, S32–S48 (1937)

    Google Scholar 

  • Cender, T.A., Simacek, P., Advani, S.G.: Resin film impregnation in fabric prepregs with dual length scale permeability. Compos. Part A: Appl. Sci. Manuf. 53, 118–128 (2013)

    Article  Google Scholar 

  • Cender, T.A., Simacek, P., Advani, S.G.: A method to determine open pore volume with pulse decay. Appl. Phys. Lett. 105(13), 134101 (2014)

    Article  Google Scholar 

  • Centea, T., Hubert, P.: Measuring the impregnation of an out-of-autoclave prepreg by micro-CT. Compos. Sci. Technol. 71(5), 593–599 (2011)

    Article  Google Scholar 

  • Centea, T., Hubert, P.: Out-of-autoclave prepreg consolidation under deficient pressure conditions. J. Compos. Mater. (2013). doi:10.1177/0021998313494101

  • Centea, T., Grunenfelder, L.K., Nutt, S.R.: A review of out-of-autoclave prepregs-material properties, process phenomena, and manufacturing considerations. Compos. Part A: Appl. Sci. Manuf. 70, 132–154 (2015)

    Article  Google Scholar 

  • Civan, F.: Effective correlation of apparent gas permeability in tight porous media. Transp. Porous Media 82, 375–384 (2010)

    Article  Google Scholar 

  • Darabi, H., Ettehad, A., Javadpour, F., Sepehrnoori, K.: Gas flow in ultra-tight shale strata. J. Fluid Mech. 710, 641–658 (2012)

    Article  Google Scholar 

  • Darcy, H.: Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris (1856)

    Google Scholar 

  • Feser, J., Prasad, A., Advani, S.G.: Experimental characterization of in-plane permeability of gas diffusion layers. J. Power Sources 162(2), 1226–1231 (2006)

    Article  Google Scholar 

  • Florence, F.A., Rushing, J., Newsham, K.E., Blasingame, T.A.: Improved permeability prediction relations for low permeability sands. In Rocky mountain oil & gas technology symposium. Society of Petroleum Engineers (2007)

  • Grunenfelder, L.K., Centea, T., Hubert, P., Nutt, S.R.: Effect of room-temperature out-time on tow impregnation in an out-of-autoclave prepreg. Compos. Part A: Appl. Sci. Manuf. 45, 119–126 (2013)

    Article  Google Scholar 

  • Grunenfelder, L.K., Nutt, S.R.: Void formation in composite prepregs-effect of dissolved moisture. Compos. Sci. Technol. 70(16), 2304–2309 (2010)

    Article  Google Scholar 

  • Helmus, R., Centea, T., Hubert, P., Hinterholzl, R.: Out-of-autoclave prepreg consolidation: Coupled air evacuation and prepreg impregnation modeling. J. Compos. Mater. 50, 1403–1413 (2015)

    Article  Google Scholar 

  • Hou, Y., Comas-Cardona, S., Binetruy, C., Drapier, S.: Gas transport in fibrous media: application to in-plane permeability measurement using transient flow. J. Compos. Mater. 47(18), 2237–2247 (2012)

    Article  Google Scholar 

  • Hsiao, K.: Gas Transport and Water Vapourization in Out-of-Autoclave Prepreg Laminates. Master’s thesis, University of British Columbia, Vancouver (2012)

  • Jannot, Y., Lasseux, D.: A new quasi-steady method to measure gas permeability of weakly permeable porous media. Rev. Sci. Instrum. 83(1), 015113 (2012)

    Article  Google Scholar 

  • Jones, S.C.: A rapid accurate unsteady-state Klinkenberg permeameter. SPE 3535, 383–397 (1972)

    Article  Google Scholar 

  • Klinkenberg, L.J.: The permeability of porous media to liquids and gases. American Petroleum Institute (1941)

  • Knudsen, M.: Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren. Ann. Phys. 333(1), 75–130 (1909)

    Article  Google Scholar 

  • Kozeny, J.: Über kapillare Leitung des Wassers im Boden, vol. 136. Sitzungsber Akad Wiss, Wien (1927)

    Google Scholar 

  • Kratz, J., Hubert, P.: Anisotropic air permeability in out-of-autoclave prepregs: Effect on honeycomb panel evacuation prior to cure. Compos. Part A: Appl. Sci. Manuf. 49, 179–191 (2013)

    Article  Google Scholar 

  • Leclaire, P., Umnova, O., Horoshenkov, K.V., Maillet, L.: Porosity measurement by comparison of air volumes. Rev. Sci. Instrum. 74(3), 1366–1370 (2003)

    Article  Google Scholar 

  • Levy, A., Kratz, J., Hubert, P.: Air evacuation during vacuum bag only prepreg processing of honeycomb sandwich structures: In-plane air extraction prior to cure. Compos. Part A: Appl. Sci. Manuf. 68, 365–376 (2015)

    Article  Google Scholar 

  • Li, J., Zhan, H., Huang, G.: Applicability of the linearized governing equation of gas flow in porous media. Trans. Porous Media 87(3), 815–834 (2011)

    Article  Google Scholar 

  • Liang, Y., Price, J.D.: Nonlinear pressure diffusion in a porous medium: approximate solutions with applications to permeability measurements using transient pulse decay method. J. Geophys. Res. 106, 529–535 (2001)

    Article  Google Scholar 

  • Muskat, M.: The flow of compressible fluids through porous media and some problems in heat conduction. J. Appl. Phys. 5, 71–94 (1934)

    Google Scholar 

  • Parseval, Y.D.E., Pillai, K.M., Advani, S.G.: A simple model for the variation of permeability due to partial saturation in dual scale porous media. Trans. Porous Media 27, 243–264 (1997)

    Article  Google Scholar 

  • Pettersson, P.: Fluid Flow in Wood Fiber Networks. Ph.D. Thesis, Lulea University of Technology, Lulea (2006)

  • Roy, S., Raju, R., Chuang, H.F., Cruden, B., Meyyappan, M.: Modeling gas flow through microchannels and nanopores. J. Appl. Phys. 93(8), 4870 (2003)

    Article  Google Scholar 

  • Salissou, Y., Panneton, R.: Pressure/mass method to measure open porosity of porous solids. J. Appl. Phys. 101(12), 124913 (2007)

    Article  Google Scholar 

  • Standard, A.S.T.M.: D6226-10: Standard Test Method for Open Cell Content of Rigid Cellular Plastics. ASTM International, West Conshohocken, PA (2010)

  • Steckelmacher, W.: Knudsen flow 75 years on: the current state of the art for flow of rarefied gases in tubes and systems. Rep. Prog. Phys. 49, 1083–1107 (1986)

    Article  Google Scholar 

  • Tavares, S.S., Michaud, V.: Through thickness air permeability of prepregs during cure. Compos. Part A: Appl. Sci. Manuf. 40(10), 1587–1596 (2009)

    Article  Google Scholar 

  • Tavares, S.S., Michaud, V.: Assessment of semi-impregnated fabrics in honeycomb sandwich structures. Compos. Part A: Appl. Sci. Manuf. 41(1), 8–15 (2010)

    Article  Google Scholar 

  • Thomas, S., Bongiovanni, C., Nutt, S.R.: In situ estimation of through-thickness resin flow using ultrasound. Compos. Sci. Technol. 68, 3093–3098 (2008)

    Article  Google Scholar 

  • Vazques, J.L.: The Porous Media Equation: Mathematical Theory. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  • Wu, Y.S., Pruess, K., Persoff, P.: Gas flow in porous media with Klinkenberg effects. Trans. Porous Media 32, 117–137 (1998)

    Article  Google Scholar 

  • Zhang, D., Heider, D., Gillespie Jr., J.W.: Role of Prepreg Interlayer Permeability on Void Reduction During Oven Vacuum Bag Processing of Thick Section Thermoplastic Composites. Society for Advanced Materials and Processes Engineering, Baltimore (2015)

    Google Scholar 

  • Ziarani, A.S., Aguilera, R.: Knudsens permeability correction for tight porous media. Trans. Porous Media 91, 239–260 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Mehmet Ömer and Emily Readdy for their help with the experimental validation. Research was sponsored by the Office of Naval Research under Grant No. N00014-10-1-0971. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Office of Naval Research. Research was also supported by the Delaware Space Grant College and Fellowship Program (NASA Grant NNX15AI19H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Cender.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cender, T.A., Simacek, P., Davis, S. et al. Gas Evacuation from Partially Saturated Woven Fiber Laminates. Transp Porous Med 115, 541–562 (2016). https://doi.org/10.1007/s11242-016-0784-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0784-x

Keywords

Navigation