Skip to main content
Log in

Decomposing J-function to Account for the Pore Structure Effect in Tight Gas Sandstones

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The J-function predicts the capillary pressure of a formation by accounting for its transport properties such as permeability and porosity. The dependency of this dimensionless function on the pore structure is usually neglected because it is difficult to implement such dependency, and also because most clastic formations contain mainly one type of pore structure. In this paper, we decompose the J-function to account for the presence of two pore structures in tight gas sandstones that are interpreted from capillary pressure measurements. We determine the effective porosity, permeability, and wetting phase saturation of each pore structure for this purpose. The throats, and not the pores, are the most important parameter for this determination. We have tested our approach for three tight gas sandstones formations. Our study reveals that decomposing the J-function allows us to capture drainage data more accurately, so that there is a minimum scatter in the scaled results, unlike the traditional approach. This study can have major implications for understanding the transport properties of a formation in which different pore structures are interconnected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Raoush, R., Thompson, K.E., Willson, C.S.: Comparison of network generation techniques for unconsolidated porous media. Soil Sci. Soc. Am. J. 67, 1687–1700 (2003)

    Article  Google Scholar 

  • Al-Shalabi, E.W., Sepehrnoori, K., Delshad, M.: Mechanisms behind low salinity water injection in carbonate reservoirs. Fuel 121, 11–19 (2014)

    Article  Google Scholar 

  • Alpak, F.O., Lake, L.W., Embid, S.M.: Validation of a Modified Carman–Kozeny Equation to Model Two-Phase Relative Permeabilities: Society of Petroleum Engineers Annual Technical Conference and Exhibition, Houston, Texas, 3–6 October 1999. Paper SPE 56479-MS (1999)

  • Apourvari, S.N., Arns, C.H.: Image-based relative permeability upscaling from the pore scale. Adv. Water Res. 95, 161–175 (2016)

    Article  Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Garboczi, E.J.: Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment. Geophysics 67, 1396–1405 (2002)

    Article  Google Scholar 

  • Balhoff, M.T., Thompson, K.E.: Modeling the steady flow of yield-stress fluids in packed beds. AIChE J. 50(12), 3034–3048 (2004)

    Article  Google Scholar 

  • Balhoff, M.T., Thompson, K.E.: A macroscopic model for shear-thinning flow in packed beds based on network modeling. Chem. Eng. Sci. 61(2), 698–719 (2006)

    Article  Google Scholar 

  • Bentsen, R.G., Anli, J.: Using parameter estimation techniques to convert centrifuge data into a capillary-pressure curve. SPE J. 17(1), 57–64 (1997)

    Article  Google Scholar 

  • Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Insights into non-Fickian solute transport in carbonates. Water Resour. Res. 49, 2714–2728 (2013)

    Article  Google Scholar 

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Res. 51, 197–216 (2013)

    Article  Google Scholar 

  • Brooks, R.H., Corey, A.T.: Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. 92(2), 61–90 (1966)

    Google Scholar 

  • Brown, H.W.: Capillary pressure investigations. J. Pet. Technol. 192, 67–74 (1951)

    Article  Google Scholar 

  • Bryant, S.L., Blunt, M.J.: Prediction of relative permeability in simple porous media. Phys. Rev. A. 46, 2004–2011 (1992)

    Article  Google Scholar 

  • Bryant, S.L., Mason, G., Mellor, D.: Quantification of spatial correlation in porous media and its effect on mercury porosimetry. J. Colloid Interface Sci. 177, 88–100 (1996)

    Article  Google Scholar 

  • Byrnes, A.P., Cluff, R.M., Webb, J.C.: Analysis of Critical Permeability, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. basins. University of Kansas Center for Research, Prepared for the U.S. Department of Energy 2009; DOE Award No. DE-FC26-05NT42660, 247 pp (2009)

  • Buryakovsky, L., Chilingar, G.V., Rieke, H.H., Shin, S.: Fundamentals of the Petrophysics of Oil and Gas Reservoirs. Wiley, New York (2012)

    Book  Google Scholar 

  • Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 036, 307 (2009)

    Article  Google Scholar 

  • Fathi, E., Akkutlu, I.Y.: Matrix heterogeneity effect on gas transport and adsorption in coalbed and shale gas reservoirs. Trans. Porous Media 80(2), 281–304 (2009)

    Article  Google Scholar 

  • Fatt, I.: The network model of porous media. I. Capillary pressure characteristics. Trans Soc. Min. Eng. AIME 207, 144–159 (1956)

    Google Scholar 

  • Heller, R., Zoback, M.: Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. J. Unconv. Oil Gas Res. 8, 14–24 (2014)

    Article  Google Scholar 

  • Javadpour, F., Fisher, D., Unsworth, M.: Nanoscale gas flow in shale gas sediments. J. Can. Pet. Technol. 46(10), 55–61 (2007)

    Article  Google Scholar 

  • Joekar-Niasar, V., Hassanizadeh, S.M., Leijnse, A.: Insights into the relationships among capillary pressure, saturation, interfacial area and relative permeability using pore-scale network modeling. Transp. Porous Media 74, 201–219 (2008)

    Article  Google Scholar 

  • Kethireddy, N., Chen, H., Heidari, Z.: Quantifying the effect of kerogen on electrical resistivity measurement in organic-rich source rocks. Petrophysics 55, 136–146 (2014)

    Google Scholar 

  • Leverett, M.C.: Capillary behavior in porous solids. Trans. AIME 142, 159–172 (1941)

    Google Scholar 

  • Lindquist, W.B., Venkatarangan, A.: Investigating 3d geometry of porous media from high resolution images. Phys. Chem. Earth 24, 639–644 (1999)

    Article  Google Scholar 

  • Mason, G., Mellor, D.W.: Simulation of drainage and imbibition in a random packing of equal spheres. J. Colloid Sci. 176(1), 214–225 (1995)

    Article  Google Scholar 

  • Mehmani, A., Prodanovic, M.: The effect of microporosity on transport properties in porous media. Adv. Water Res. 63, 104–119 (2014)

    Article  Google Scholar 

  • Milliken, K.L.: Diagenetic heterogeneity in sandstone at the outcrop scale, Breathitt Formation (Pennsylvanian), eastern Kentucky. AAPG Bull. 85(5), 795–816 (2001)

    Google Scholar 

  • Mostaghimi, P., Blunt, M.J., Bijeljic, B.: Computations of absolute permeability on micro-CT images. Math. Geosci. 45, 103–125 (2012)

    Article  Google Scholar 

  • Mousavi, M., Bryant, S.: Connectivity of pore space as a control on two-phase flow properties of tight-gas sandstones. Trans. Porous Media 94, 537–554 (2012)

    Article  Google Scholar 

  • Oren, P.E., Bakke, S., Arntzen, O.J.: Extending predictive capabilities to network models. SPE J. 3(4), 324–336 (1998)

    Article  Google Scholar 

  • Oren, P.E., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Trans. Porous Media 46(2–3), 311–343 (2002)

    Article  Google Scholar 

  • Oren, P.E., Bakke, S., Held, R.: Direct pore-scale computation of material and transport properties for North Sea reservoir rocks. Water Resour. Res. 43, W12S04 (2007)

    Article  Google Scholar 

  • Ovaysi, S., Piri, M.: Direct pore-level modeling of incompressible fluid flow in porous media. J. Comput. Phys. 229(19), 7456–7476 (2010)

    Article  Google Scholar 

  • Ovaysi, S., Piri, M.: Pore-scale modeling of dispersion in disordered porous media. J. Contam. Hydrol. 124(1–4), 68–81 (2011)

    Article  Google Scholar 

  • Peters, E.J.: Advanced Petrophysics. Greenleaf Book Group, Austin (2012)

    Google Scholar 

  • Piri, M., Blunt, M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Phys. Rev. E 71, 026301 (2005)

    Article  Google Scholar 

  • Piri, M., Karpyn, Z.T.: Prediction of fluid occupancy in fractures using network modeling and X-ray microtomography. Part 2: results. Phys. Rev. E 76, 016316 (2007)

    Article  Google Scholar 

  • Prodanovic, M., Bryant, S., Davis, S.J.: Numerical simulation of diagenetic alteration and its effect on residual gas in tight gas sandstones. Trans. Porous Media 96(1), 39–62 (2013)

    Article  Google Scholar 

  • Purcell, W.R.: Capillary pressures-their measurement using mercury and the calculation of permeability therefrom. J. Pet. Technol. 1(02), 39–48 (1949)

    Article  Google Scholar 

  • Sahimi, M.: Application of Percolation Theory. Taylor & Francis, Bristol (1994)

    Google Scholar 

  • Sakhaee-Pour, A., Bryant, S.L.: Gas permeability of shale. SPE Res. Eval. Eng. 15(4), 401–409 (2012)

    Google Scholar 

  • Sakhaee-Pour, A., Bryant, S.L.: Effect of pore structure on the producibility of tight gas sandstones. AAPG Bull. 98(4), 663–694 (2014)

    Article  Google Scholar 

  • Sakhaee-Pour, A., Bryant, S.L.: Pore structure of shale. Fuel 143, 467–475 (2015)

    Article  Google Scholar 

  • Saneifar, M., Aranibar, A., Heidari, Z.: Rock classification in the Haynesville Shale based on petrophysical and elastic properties estimated from well logs. Interpretation 3(1), SA65–SA75 (2014)

    Article  Google Scholar 

  • Shanley, K.W., Cluff, R.M., Robinson, J.W.: Factors controlling prolific gas production from low-permeability sandstone reservoirs: implications for resource assessment, prospect development, and risk analysis. AAPG Bull. 88(8), 1083–1121 (2014)

    Article  Google Scholar 

  • Spanne, P., Thovert, J.F., Jacquin, C.J., Lindquist, W.B., Jones, K.W., Adler, P.M.: Synchrotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett. 73(14), 2001–2004 (1994)

    Article  Google Scholar 

  • Takbiri Borujeni, A., Lane, N., Tyagi, M., Thompson, K.E.: Effects of image resolution and numerical resolution on computed permeability of consolidated packing using LB and FEM pore-scale simulations. Comput. Fluids 88, 753–763 (2013)

    Article  Google Scholar 

  • Teufel, L.W.: Determination of in-situ stress from anelastic strain recovery measurements of oriented core. In: Society of Petroleum Engineers/Department of Energy Symposium on Low Permeability. Denver, Colorado. SPE/DOE Paper 11649, pp. 421–430 (1983)

  • Teufel, L.W.: Acoustic emissions during an-elastic strain recovery of cores from deep boreholes. In: Khair, A.W. (ed.) Rock Mechanics as a Guide for Efficient Utilization of Natural Resources, pp. 269–276. Balkema, Rotterdam (1989)

    Google Scholar 

  • Thomas, L.K., Katz, D.L., Tek, M.R.: Threshold pressure phenomena in porous media. SPE J. 8(2), 174–184 (1968)

    Article  Google Scholar 

  • Thomeer, J.H.M.: Introduction of a pore geometrical factor defined by the capillary pressure curve. J. Pet. Technol. 12(3), 73–77 (1960)

    Article  Google Scholar 

  • Thompson, K.E., Fogler, H.S.: Pore-level mechanisms for altering multiphase permeability with gels. SPE J. 2(3), 350–362 (1997)

    Article  Google Scholar 

  • Thompson, K.E., Fogler, H.S.: A pore-scale model for fluid injection and in-situ gelation in porous media. Phys. Rev E. 57(5B), 5825 (1998)

    Article  Google Scholar 

  • Thompson, K.E., Willson, C.S., White, C.D., Nyman, S., Bhattacharya, J., Reed, A.H.: Application of a new grain-based reconstruction algorithm to microtomography images for quantitative characterization and flow modeling. SPE J. 13(2), 164–176 (2008)

    Article  Google Scholar 

  • Valvatne, P.H., Piri, M., Blunt, M.J.: Predictive pore scale modeling of single and multiphase flow. Transp. Porous Media 58(1–2), 23–41 (2005)

    Article  Google Scholar 

  • Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921)

    Article  Google Scholar 

  • Wildenschild, D., Sheppard, A.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)

    Article  Google Scholar 

  • Yu, W., Sepehrnoori, K.: Simulation of gas desorption and geomechanics effects for unconventional gas reservoirs. Fuel 116, 455–464 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the constructive comments of the anonymous reviewers that helped improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sakhaee-Pour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhaee-Pour, A. Decomposing J-function to Account for the Pore Structure Effect in Tight Gas Sandstones. Transp Porous Med 116, 453–471 (2017). https://doi.org/10.1007/s11242-016-0783-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0783-y

Keywords

Navigation