Skip to main content
Log in

Analytical Model of the Transport of Aerosol Particles in a Circular Hole Inside a Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

A Correction to this article was published on 20 October 2021

This article has been updated

Abstract

The approximate analytical and numerical solutions of the problem of aerosol motion in a circular hole inside a porous medium are presented using the approximations of Poiseuille flow for the carrier phase and the convective-diffusive equation of transport of inertialess particles. Analytical expressions for the fluid velocity profile, the space distribution of particle concentration, and the penetration that include the Darcy number and a slip coefficient at the interface between the porous medium and an adjacent free fluid are obtained as parameters. The numerical solution of the problem of the air flow in the combined porous and free fluid regions was used in order to find the relation between the slip coefficient and the Darcy number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

References

  • Alonso, M., Alguacil, F.J.: Penetration of aerosol undergoing combined electrostatic dispersion and diffusion in a cylindrical tube. J. Aerosol. Sci. 38, 481–493 (2007)

    Article  Google Scholar 

  • Alonso, M., Alguacil, F.J., Huang, C.-H.: Analytical approximation to the fully developed concentration profile of diffusive aerosol particles in laminar flow in a circular tube. J. Aerosol Sci. 41, 413–417 (2010)

    Article  Google Scholar 

  • Auriault, J.L.: About the Beavers and Joseph boundary condition. Transp. Porous Media 83, 257–266 (2010)

    Article  Google Scholar 

  • Basu, A.J., Khalili, A.: Computation of flow through a fluid-sediment interface in a benthic chamber. Phys. Fluids 11(6), 1395–1405 (1999)

    Article  Google Scholar 

  • Beavers, G.S., Joseph, D.D.: Boundary condition at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  • Berman, A.S.: Laminar flow in channels with porous walls. J. Appl. Phys. 24(9), 1232–1235 (1953)

    Article  Google Scholar 

  • Bhattacharyya, S., Dhinakazan, S., Khalili, A.: Fluid motion around and through a porous cylinder. Chem. Eng. Sci. 61(13), 4451–4461 (2006)

    Article  Google Scholar 

  • Brandy, J.F.: Flow development in a porous channel and tube. Phys. Fluid 27(5), 1061–1067 (1984)

    Article  Google Scholar 

  • Brown, R.C.: Air Filtration. An Integrated Approach Theory and Applications of Fibrous Filters. Pergamon Press, New York (1993)

    Google Scholar 

  • Chandesris, M., Jamet, D.: Boundary conditions at a planar fluid-porous interface for a Poiseuille flow. Int. J. Heat Mass Transf. 49, 2137–2150 (2006)

    Article  Google Scholar 

  • Chen, C.C., Willeke, K.: Characteristics of face seal leakage in filtering facepieces. Adv. Ind. Environ. Hyg. 53(9), 533–539 (1992)

    Article  Google Scholar 

  • Clement, C.F.: Aerosol penetration through capillaries and leaks: theory. J. Aerosol Sci. 26(3), 369–385 (1995)

    Article  Google Scholar 

  • Damak, K., Ayadi, A., Zeghmati, B., Schmitz, P.: A new Navier-Stokes and Darcy’s law combined model for fluid flow in crossflow filtration tubular membranes. Desalination 161, 67–77 (2004)

    Article  Google Scholar 

  • Davies, C. N.: Diffusion and sedimentation of aerosol particles from Poiseuille flow in pipes. J. Aerosol Sci. 4, 317–328 (1973)

  • Dev Sarma, B.K.: Flow in a horizontal circular cylinder bounded by a porous medium. Acta Mechanica 34, 251–255 (1979)

    Article  Google Scholar 

  • Friedlander, S.K.: Smoke, Dust, and Haze Fundamentals of Aerosol Dynamics, p. 432. University Press, Oxford (2000)

    Google Scholar 

  • Gormley, P.G., Kennedy, M.: Diffusion from a stream flowing through a cylindrical tube. Proc. R. Ir. Acad. 52A, 163–169 (1949)

    Google Scholar 

  • Ingham, D. B.: Diffusion of aerosols from a stream flowing through a cylindrical tube. J. Aerosol Sci. 6, 125–132 (1975)

  • Karode, S.K.: Laminar flow in channels porous walls. J. Membr. Sci. 191, 237–241 (2001)

    Article  Google Scholar 

  • Kirsh, V.A.: Stokes flow past periodic rows of porous cylinders. Theor. Found. Chem. Eng. 40(5), 465–471 (2006)

    Article  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, p. 532. Pergamon Press, Oxford (1987)

    Google Scholar 

  • Lee, K.W., Gieseke, J.A.: Simplified calculation of aerosol penetration through channels and tubes. Atmos. Environ. 14, 1089–1094 (1980)

    Article  Google Scholar 

  • Liu, B.Y., Lee, J., Mullinsb, H., Danisch, S.: Respirator leak detection by ultrafine aerosols: a predictive model and experimental study. Aerosol Sci. Technol. 19(1), 15–26 (1993)

    Article  Google Scholar 

  • Mosina, E.A., Chernyshev, I.V.: Slip condition on the surface of a model fibrous porous medium. Tech. Phys. Lett. 35(3), 245–248 (2009)

    Article  Google Scholar 

  • Mouret, G., Thomas, D., Chazelet, S., Appert-Collin, J.-C., Bemer, D.: Penetration of nanoparticles through fibrous filters perforated with defined pinholes. J. Aerosol Sci. 40, 762–775 (2009)

    Article  Google Scholar 

  • Munson-McGee, S.H.: An approximate analytical solution for the fluid dynamics of laminar flow in a porous tube. J. Membr. Sci. 197, 230–233 (2002)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (1992)

    Book  Google Scholar 

  • Pak, A., Mohammadi, T., Hosseinalipour, S.M., Allahdini, V.: CFD modeling of porous membranes. Desalination 222, 482–488 (2008)

    Article  Google Scholar 

  • Sahraoui, M., Kaviany, M.: Slip and no-slip velocity boundary conditions at inter face of porous, plain media Int. J. Heat Mass Transf. 35(4), 927–943 (1992)

    Article  Google Scholar 

  • Yuan, S.W., Funkelstein, A.B.: Laminar pipe flow with injection and suction through a porous wall. Trans. ASME 78, 719–724 (1956)

    Google Scholar 

Download references

Acknowledgments

This work was supported by RFBR (Grants N 12-01-00333, 14-01-31118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Zaripov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaripov, S.K., Soloveva, O.V. & Skvortsov, E.V. Analytical Model of the Transport of Aerosol Particles in a Circular Hole Inside a Porous Medium. Transp Porous Med 107, 141–151 (2015). https://doi.org/10.1007/s11242-014-0429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0429-x

Keywords

Navigation