Skip to main content
Log in

Influence of Ionic Strength and Flow Rate on Silt Particle Deposition and Release in Saturated Porous Medium: Experiment and Modeling

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this paper, the influence of ionic strength on the dynamic transport of silt microparticles through saturated sand texture is studied in the presence of repulsive interactions. The deposition and release phenomenon is investigated through experimental column trials. Different ionic strengths are applied by adjustment of suspension salinity. Two trial configurations are performed: Monotonic experiments highlight particle deposition mechanisms, and non-monotonic tests focus on release phenomena under ionic strength and flow rate perturbations. Through this experimental study, the ionic strength influence on the deposition and release phenomenon is shown. The presence of both mechanical and physico-chemical mechanisms is proved experimentally. This study proves that ionic strength variation is a primal parameter which predicts the attachment and detachment of particles at constant flow. These experiments are simulated and reproduced through a numerical model based on original deposit and release kinetics which are proposed in this study. This model is the coupling of two multiphasic problems describing conservative salt and microparticle transport. The proposed kinetics formulations are founded on performed experimental test constitutions in this study. They take into account the flow rate and the suspension ionic strength. The suggested model reproduces well the experimental description of the suspended particles transport under the influence of ionic strength and flow velocity variations. It permits to predict the deposition and release phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahfir, N.D., Wang, H.Q., Benamar, A., Alem, A., Massei, N., Dupont, J.P.: Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect. Hydrogeol. J. 15(4), 659–668 (2006)

    Article  Google Scholar 

  • Ahfir, N.D., Benamar, A., Alem, A., Wang, H.Q.: Transport et cinétique de dépôt des particules en suspension dans un milieu poreux granulaire: étude des mécanismes de rétention des particules. 18 ème Congrès Français de mécanique le 27–31 août 2007, Grenoble (2007)

  • Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)

    Google Scholar 

  • Bergna, H.E., William, O.R.: Colloidal Silica. Fundamentals and Applications (Surfactant Science Series), vol. 131. CRC Press Taylor & Francis Group, Boca Raton (2006)

    Google Scholar 

  • Blume, T., Weisbrodc, N., Selker, J.S.: On the critical salt concentrations for particle detachment in homogeneous sand and heterogeneous Hanford sediments. Geoderma 124(1–2), 121–132 (2005)

    Article  Google Scholar 

  • Bradford, S.A., Kim, H.G., Haznedaroglu, B.Z., Torkbzaban, S., Walker, S.L.: Coupled factors influencing concentration dependent colloid transport and retention in saturated porous media. Environ. Sci. Technol. 43(18), 6996–7002 (2009)

    Article  Google Scholar 

  • Bradford, S.A., Torkzaban, S., Walker, S.L.: Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res. 41(13), 3012–3024 (2007)

    Article  Google Scholar 

  • Bradford, S.A., Yates, S.R., Bettahar, M., Simunek, J.: Physical factors affecting the transport and fate of colloids in saturated porous media. Water Res. 38(12), 1327–1338 (2002)

    Google Scholar 

  • Cerda, C.M.: Mobilization of kaolinite fines in porous media. Colloids Surf. 27(1—-3), 219–241 (1987)

    Article  Google Scholar 

  • Compère, F., Porel, G., Delay, F.: Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity. J. Contam. Hydrol. 49(1–2), 1–21 (2001)

    Article  Google Scholar 

  • Cumbie, D., McKay, L.: Influence of diameter on particle transport in a fractured shale saprolite. J. Contam. Hydrol. 37, 139–157 (1999)

    Article  Google Scholar 

  • Marsily, De: Hydrogéologie Quantitative. Masson, Paris (1981)

    Google Scholar 

  • Derjaguin, B.V., Landau, L.D.: Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chem. URSS 14, 633–662 (1941)

    Google Scholar 

  • Djehiche, A., Canseco, V., Omari, A., Bertin, H.: Étude expérimentale du dépôt de particules colloïdales en milieu poreux : Influence de l’hydrodynamique et de la salinité. C. R. Mecanique 337, 682–692 (2009)

    Article  Google Scholar 

  • Elimelech, M., Gregory, J., Jia, X., Williams, R.A.: Particle deposition and aggregation: measurement, modeling, and simulation. Langmuir 26, 16690–16698 (1995)

    Google Scholar 

  • Elimelech, M., Nagai, M., Ko, C., Ryan, J.: Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environ. Sci. Technol. 34, 2143–2148 (2000)

    Article  Google Scholar 

  • Fan, Z., Casey, F.X.M., Hakk, H., Larsen, G.L., Khan, E.: Sorption, fate, and mobility of sulfonamides in soils. Water Air Soil Pollut. 218, 49–61 (2011)

    Article  Google Scholar 

  • Fauré, M.H., Sardin, M., Vitorge, P.: Transport of clay particles and radioelements in a salinity gradient experiments and simulations. J. Contam. Hydrol. 21, 255–267 (1996)

    Article  Google Scholar 

  • Florian, K., Kurt, B., Bhattacharjee, S., Elimelech, M., Kretzchmar, R.: Transport of iron oxide colloids in packed quartz sand media: monolayer and multilayer deposition. J. Colloid Interface Sci. 231, 32–41 (2000)

    Article  Google Scholar 

  • Fontes, D.E., MILLS, A.L., Hornberger, G.M., Herman, J.S.: Physical and chemical factors influencing transport of microorganisms through porous media. Appl. Environ. Microbiol. 57(9), 2473–2481 (1991)

    Google Scholar 

  • Foppen, J.W., Van Herwerden, M., Schijven, J.: Measuring and modelling straining of Escherichia coli in saturated porous media. J. Contam. Hydrol. 93, 236–254 (2007)

    Article  Google Scholar 

  • Gao, B., Saiers, J., Ryan, J.: Deposition and mobilization of clay colloids in unsaturated porous media. Water Resour. Res. 40, W08602 (2004)

    Google Scholar 

  • Giuseppe, M., Guerra, G.: Understanding at molecular level of nanoporous and cocrystalline materials based on syndiotactic polystyrene. Prog. Mater. Sci. 54(1), 68–88 (2009)

    Article  Google Scholar 

  • Gregory, J.: Approximate expressions for retarded van der waals interaction. Colloid Interface Sci. 83, 138–145 (1981)

    Article  Google Scholar 

  • Grolimund, D., Borkovec, M.: Long term release kinetics of colloidal particles from natural porous media. Environ. Sci. Technol. 33, 4054–4060 (1999)

    Article  Google Scholar 

  • Grolimund, D., Borkovec, M.: Release of colloidal particles in natural porous media by monovalent and divalent cations. J. Contam. Hydrol. 87, 155–175 (2006)

    Article  Google Scholar 

  • Grolimund, D., Barmettle, K., Borkovec, M.: Colloid facilitated transport in natural porous media: fundamental phenomena and modelling. J. Colloid. Transp. Porous Med. XII, 292 (2007)

    Google Scholar 

  • Harmand, B., Rodier, E., Sardin, M., Dodds, J.: Transport and capture of submicron particles in a natural sand: short column experiments and a linear model. Colloids Surf. A Physicochem. Eng. Asp. 107, 233–244 (1996)

    Article  Google Scholar 

  • Herzig, P.J., Leclerc, D., Goff, PLe: Flow of suspensions through porous media. Application to deep filtration. Ind. Eng. Chem. 62(5), 8–35 (1970)

    Article  Google Scholar 

  • Hiemenz, P., Rajagopalan, R.: Principles of Colloid and Surface Chemistry, 3rd edn. Marcel Decker Inc., New York (1997)

    Google Scholar 

  • Hofmann, T., Baumann, T., Bundschuh, T., Kammer, F., Leis, A., Schmitt, D., et al.: Aquatic colloids 1: Definition and relevance a review. Grundwasser 8(4), 203–210 (2003)

    Article  Google Scholar 

  • Hogg, R., Healy, T., Fuersten, D.: Mutual coagulation of colloidal dispersions. Trans. Faraday Soc. 62(522), 1638–1651 (1966)

    Article  Google Scholar 

  • Hong, S., Elimelech, M.: Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J. Membr. Sci. 132(2), 159–181 (1997)

    Article  Google Scholar 

  • Johnson, R.P., Elimelech, M.: Dynamics of colloid deposition in porous media: blocking based on random sequential adsorption. Langmuir 11, 801–812 (1995)

    Article  Google Scholar 

  • Khilar, K.C., Fogler, H.S.: Migration of Fines in Porous Media. Kluwer Academic Publishers, London (1998)

    Book  Google Scholar 

  • Khilar, K.C., Fogler, H.S.: The existence of critical salt concentration for particle release. J. Colloid Interface Sci. 101(1), 214–224 (1984)

    Article  Google Scholar 

  • Ko, C.H., Subir, B.: Coupled influence of colloidal and hydrodynamic interactions on the RSA dynamic blocking function for particle deposition onto spherical collectors. J. Colloid Interface Sci. 229, 554 (2000)

    Article  Google Scholar 

  • Kolawoski, J.E., Matijevic, E.: Particle adhesion and removal in model systems: part I. Monodispersed chromium hydroxide on glass. J. Chem. Soc. Faraday Trans. 75(1), 65–78 (1979)

    Article  Google Scholar 

  • Kretzchmar, R., Borkovec, M., Grolimund, D., Elimelech, M.: Mobile surface colloids and their role in contaminant transport. Adv. Agron. 66, 121–193 (1999)

    Article  Google Scholar 

  • Kretzschmar, R., Barmettle, K., Grolimund, D., Yan, Y.D., Borkovec, M., Sticher, H.: Experimental determination of colloid depositionrates and collision efficiencies in natural porous media. Water Resour. Res. 33(5), 1129–1137 (1997)

    Article  Google Scholar 

  • Kuznar, Z., Elimelech, M.: Direct microscopic osbservation of particle deposition in porous media. Colloid Surf. 294(1–3), 156–162 (2007)

    Article  Google Scholar 

  • Lenhart, J.J., Saiers, J.E.: Collloid mobilization in water saturated porous media under transient chemical condition. Environ. Sci. Technol. 37(12), 2780–2787 (2003)

    Article  Google Scholar 

  • Li, X., Zhang, P., Lin, C., Johnson, W.: Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions. Environ. Sci. Technol. 39, 4012–4020 (2005)

    Article  Google Scholar 

  • Lyklema, J.: Fundamentals of Interface and Colloid Science (Solid–Liquid Interfaces), vol. 2. Academic Press, London (1995)

    Google Scholar 

  • McDowell-Boyer, L.M.: Chemical mobilization of micron sized particles in saturated porous media under steady flow conditions. Environ. Sci. Technol. 26(3), 586–593 (1992)

    Article  Google Scholar 

  • Mcdowell-Boyer, L., Hunt, J., Itar, N.: Particle transport through porous media. Water Resour. Res. 22(13), 1901–1921 (1986)

    Article  Google Scholar 

  • McGechan, M.B., Lewis, D.R.: Transport of particulate and colloid sorbed contaminants through soil, Part 1: general principles. Biosyst. Eng. 83(3), 255–273 (2002)

    Article  Google Scholar 

  • McNaught, D., Wilkinson, A.: IUPAC Compendium of Chemical Terminology, 2nd edn. Blackwell Science, Oxford (1997)

    Google Scholar 

  • Nowack, B., Bucheli, T.D.: Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, 5–22 (2007)

    Article  Google Scholar 

  • Redman, J., Walker, S., Elimelech, M.: Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ. Sci. Technol. 38, 1777–1785 (2004)

    Article  Google Scholar 

  • Roy, S.B., Dzombak, D.A.: Colloid release and transport processes in natural and porous media. Colloids Surf. A Physicochem. Eng. Asp. 107, 245–262 (1996)

    Article  Google Scholar 

  • Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. Colloids Surf. A Physicochem. Eng. Asp. 107, 1–56 (1996)

    Article  Google Scholar 

  • Ryan, J.N., Gschwend, P.M.: Effect of solution chemistry on clay colloid release from an iron oxide coated aquifer sand. Environ. Sci. Technol. 28(9), 1717–1726 (1994)

    Article  Google Scholar 

  • Ryan, J.N., Gschwend, P.M.: Effect of ionic strength and flow rate on colloid detachment kinetics. Dependance on intersurface potential energy. J. Colloid Interface Sci. 164, 21–34 (1994)

    Article  Google Scholar 

  • Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. J. Colloids Surf. A Physicochem. Eng. Asp. 107, 1–56 (1996)

    Article  Google Scholar 

  • Saiers, J.E., Hornberger, G.M.: First and second order kinetics approaches for modeling the transport of colloidal particles in porous media. Water Resour. Res. 30(9), 2499 (1994)

    Article  Google Scholar 

  • Saiers, J.E., Ryan, J.N.: Introduction to special section on Colloid Transport in Subsurface Environments. Water Resour. Res. 42(12), W12S01 (2006)

    Google Scholar 

  • Tiraferri, A., Tosco, T., Sethi, A.: Transport and retention of micro particles in packed sand columns at low and intermediate ionic strengths experiments and mathematical modeling. Environ. Earth Sci. 63(4), 847–859 (2011)

    Article  Google Scholar 

  • Tosco, T., Tiraferri, A., Sethi, A.: Ionic strength transport of micro particles in saturated porous media: modeling mobilization and immobilization phenomena under transient chemical conditions. Environ. Sci. Technol. 43(12), 4425–4431 (2009)

    Article  Google Scholar 

  • Tufenkji, N.: Modeling microbial transport in porous media: traditional approaches and recent developments. Langmuir 30(6–7), 1455–1469 (2007)

    Google Scholar 

  • Tufenkji, N., Elimelech, M.: Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir 20, 10818–10828 (2004)

    Article  Google Scholar 

  • Tufenkji, N., Elimelech, M.: Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities. Langmuir 21, 841–852 (2005)

    Article  Google Scholar 

  • Tufenkji, N., Redman, J.A., Elimelech, M.: Deposition patterns of microbial particles in laboratory scale column experiments. Environ. Sci. Technol. 37(3), 616–623 (2003)

    Article  Google Scholar 

  • Van der Lee, J., Ledoux, E., De Marsily, G., De Cayeux, M., Van der Weerd, H., Fraters, B., Doods, J., Rodier, E., Sardin, M., Hernandez, A.: A Bibliographical Review of Colloid Transport Through the Geosphere. Nuclear Science and Technology. European Commission, Brussels (1994)

    Google Scholar 

  • Vardoulakis, I.: Fluidization in artesian flow conditions: hydro mechanically unstable granular media. Géotechnique 54(3), 165–177 (2004)

    Article  Google Scholar 

  • Verwey, E.J.W., Overbeek, J.T.G.: Theory of the Stability of Lyophobic Colloids. Elsevier Publishing Company, Inc., Amsterdam (1948)

    Google Scholar 

  • Wang, H.Q., Lacroix, M., Masséi, N., Dupont, J.P.: Particle transport in a porous medium: determination of hydrodispersive characteristics and deposition rates. Surf. Geosci. 331(2), 97–104 (2000)

    Google Scholar 

  • William, P.J., Li, X., Assemi, S.: Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Adv. Water Resour. 30(6–7), 1432–1454 (2007)

    Google Scholar 

  • Yang, X., Flynn, R., Von Der Kammer, F., Hofmann, T.: Influence of ionic strength and pH on the limitation of latex microsphere deposition sites on iron-oxide coated sand by humic acid. Environ. Pollut. 159, 1896–1904 (2011)

    Article  Google Scholar 

  • Yao, K., Habibian, M., O’Melia, C.: Water and waste water filtration: concepts and applications. Environ. Sci. Technol. 5, 1105–1112 (1971)

    Article  Google Scholar 

  • Zamani, A., Maini, B.: Flow of dispersed particles through porous media—deep bed filtration. J. Pet. Sci. Eng. 69, 71–88 (2009)

    Article  Google Scholar 

  • Zevi, Y., Dathe, A., Gao, B., Zhang, W., Richards, B.K., Steenhuis, T.S.: ransport and retention of colloidal particles in partially saturated porous media: effect of ionic strength. Water Resour. Res. 45, W12403 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zyed Mesticou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesticou, Z., Kacem, M. & Dubujet, P. Influence of Ionic Strength and Flow Rate on Silt Particle Deposition and Release in Saturated Porous Medium: Experiment and Modeling. Transp Porous Med 103, 1–24 (2014). https://doi.org/10.1007/s11242-014-0285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0285-8

Keywords

Navigation