Skip to main content
Log in

A comparative study on growth and morphology of wasabi plantlets under the influence of the micro-environment in shoot and root zones during photoautotrophic and photomixotrophic micropropagation

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The growth of wasabi (Wasabia japonica Matsumura) plantlets under different micro-environments inside culture vessels in photoautotrophic micropropagation (PA) and photomixotrophic micropropagation (PM) conditions were compared. After 28 days of culture, dry weight, relative growth rate, leaf area, and leaf chlorophyll contents of plantlets in PA were greater than those in PM. The number of leaves did not differ significantly between PA and PM conditions. PA promoted root growth and development with a greater number of roots, root length, root diameter, root fresh weight, root dry weight, and root xylem vessel system. Dissolved oxygen concentration in PA culture medium sharply decreased after 7 days of culture and then recovered. In PM culture medium, no significant fluctuation of dissolved oxygen concentration was apparent. The net photosynthetic rates of plantlets in PA were much higher than those in PM and increased with culture time. In contrast, the net photosynthetic rates of wasabi plantlets in PM kept a low and constant value during the culture period. With the presence of gas exchange membranes attached to the vessel lids, the detected vapor pressure deficit was higher in PA than in PM conditions. Higher stomatal density and larger stomatal aperture on the abaxial and adaxial surfaces of the leaves in PM medium promoted leaf water loss following ex vitro conditions. Thus, PA is applicable for producing healthy wasabi transplants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PA:

Photoautotrophic micropropagation

PM:

Photomixotrophic micropropagation

FW:

Fresh weight

DW:

Dry weight

RGR:

Relative growth rate

S/R:

Shoot/root dry weight ratio

WC:

Water content

WLR:

Water loss rate

Pn :

Net photosynthetic rate

RH:

Relative humidity

VPD:

Vapor pressure deficit

DO:

Dissolved oxygen

References

  • Chadwick CI, Lumpkin TA, Elberson LR (1993) The botany, uses and production of Wasabia japonica (Miq.) (Cruciferae) Matsum. Economic Bot 47:113–135. doi:10.1007/BF02862015

    Article  Google Scholar 

  • Couceiro MA, Afreen F, Zobayed SMA, Kozai T (2006) Enhanced growth and quality of St. John’s wort (Hypericum perforatum L.) under photoautotrophic in vitro conditions. In vitro Cell Dev Biol Plant 42:278–282. doi:10.1079/IVP2006752

    Article  Google Scholar 

  • Cui C, He F, Zhou Q et al (2006) Studies on optimizing production of wasabi plantlet. Acta Horticult Sin 33:876–878

    CAS  Google Scholar 

  • Deccetti SFC, Soares AM, Paiva R, de Castro EM (2008) Effect of the culture environment on stomatal features, epidermal cells and water loss of micropropagated Annona glabra L. plants. Sci Horticult 117:341–344. doi:10.1016/j.scienta.2008.05.020 (Amsterdam)

    Article  Google Scholar 

  • Depree JA, Howard TM, Savage GP (1999) Flavour and pharmaceutical properties of the volatile sulphur compounds of Wasabi (Wasabia japonica). Food Res Int 31:329–337. doi:10.1016/S0963-9969(98)00105-7

    Article  Google Scholar 

  • Fujiwara K, Kozai T, Watanabe I (1987) Fundamental studies on environments in plant tissue culture vessels. (3) Measurements of carbon dioxide gas concentration in closed vessels containing tissue cultured plantlets and estimates of net photosynthetic rates of the plantlets. J Agric Meteorol 43:21–30. doi:10.2480/agrmet.43.21

    Article  Google Scholar 

  • Grout BWW, Donkin ME (1987) Photosynthetic activity of cauliflower meristem cultures in vitro and at transplanting into soil. Acta Hortic 323–328. doi:10.17660/ActaHortic.1987.212.49

  • Hazarika BN (2003) Acclimatization of tissue-cultured plants. Curr Sci 85:1704–1712. doi:10.1007/s10529-010-0290-0

    CAS  Google Scholar 

  • Hung CD, Johnson K, Torpy F (2006) Liquid culture for efficient micropropagation of Wasabia japonica (Miq.) Matsumura. In vitro Cell Dev Biol Plant 42:548–552. doi:10.1079/IVP2006805

    Article  CAS  Google Scholar 

  • Iarema L, da Cruz ACF, Saldanha CW et al (2012) Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tissue Organ Cult 110:227–238. doi:10.1007/s11240-012-0145-6

    Article  Google Scholar 

  • Ivanova M, van Staden J (2010) Natural ventilation effectively reduces hyperhydricity in shoot cultures of Aloe polyphylla Schonland ex Pillans. Plant Growth Regul 60:143–150. doi:10.1007/s10725-009-9430-8

    Article  CAS  Google Scholar 

  • Jo EA, Tewari RK, Hahn EJ, Paek KY (2009) In vitro sucrose concentration affects growth and acclimatization of Alocasia amazonica plantlets. Plant Cell Tissue Organ Cult 96:307–315. doi:10.1007/s11240-008-9488-4

    Article  CAS  Google Scholar 

  • Kim TK (2014) Brassicaceae: Eutrema japonicum. Edible medicinal and non medicinal plants: modified stems, roots, bulbs, Vol 9. Springer, Dordrecht, pp 789–800

  • Kozai T (2010) Photoautotrophic micropropagation—environmental control for promoting photosynthesis. Propag Ornam Plants 10:188–204

    Google Scholar 

  • Kozai T, Kubota C (2001) Developing a photoautotrophic micropropagation system for woody plants. J Plant Res 114:525–537. doi:10.1007/PL00014020

    Article  Google Scholar 

  • Kozai T, Fujiwara K, Watanabe I (1986) Fundamental studies on environments in plant tissue culture vessels (2) Effects of stoppers and vessels on gas exchange rates between inside and outside of vessels closed with stoppers. J Agric Meteorol 42:119–127

    Article  Google Scholar 

  • Kubota C, Kakizaki N, Kozai T et al (2001) Growth and net photosynthetic rate of tomato plantlets during photoautotrophic and photomixotrophic micropropagation. HortScience 36:49–52

    CAS  Google Scholar 

  • Le VQ, Samson G, Desjardins Y (2001) Opposite effects of exogenous sucrose on growth, photosynthesis and carbon metabolism of in vitro plantlets of tomato (L. esculentum Mill.) grown under two levels of irradiances and CO2 concentration. J Plant Physiol 605:599–605. doi:10.1078/0176-1617-00315

    Google Scholar 

  • Lian ML, Murthy HN, Paek KY (2002) Culture method and photosynthetic photon flux affect photosynthesis, growth and survival of Limonium “Misty Blue” in vitro. Sci Horticult 95:239–249. doi:10.1016/S0304-4238(02)00039-0

    Article  CAS  Google Scholar 

  • Martins JPR, Verdoodt V, Pasqual M, De Proft M (2015) Impacts of photoautotrophic and photomixotrophic conditions on in vitro propagated Billbergia zebrina (Bromeliaceae). Plant Cell Tissue Organ Cult 123:121–132. doi:10.1007/s11240-015-0820-5

    Article  CAS  Google Scholar 

  • Mills D, Yanqing Z, Benzioni A (2009) Effect of substrate, medium composition, irradiance and ventilation on jojoba plantlets at the rooting stage of micropropagation. Sci Horticult 121:113–118. doi:10.1016/j.scienta.2009.01.021

    Article  CAS  Google Scholar 

  • Mohamed MAH, Alsadon AA (2010) Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Sci Horticult 123:295–300. doi:10.1016/j.scienta.2009.09.014

    Article  CAS  Google Scholar 

  • Mosaleeyanon K, Cha-Um S, Kirdmanee C (2004) Enhanced growth and photosynthesis of rain tree (Samanea saman Merr.) plantlets in vitro under a CO2-enriched condition with decreased sucrose concentrations in the medium. Sci Horticult 103:51–63. doi:10.1016/j.scienta.2004.02.010

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nguyen QT, Kozai T (1998) Environmental effects on the growth of plantlets in micropropagation. Environ Control Biol 36:59–75. doi:10.2525/ecb1963.36.59

    Article  Google Scholar 

  • Nguyen QT, Kozai T (2001) Photoautotrophic micropropagation of tropical and subtropical woody plants. In: Morohoshi N, Komamine A (eds) Molecular Breeding of Woody Plants. Elsevier Science B.V., Amsterdams, The Netherlands, pp 335–344

    Google Scholar 

  • Oh MM, Seo JH, Park JS, Son JE (2012) Physicochemical properties of mixtures of inorganic supporting materials affect growth of potato (Solanum tuberosum L.) plantlets cultured photoautotrophically in a nutrient-circulated micropropagation system. Hortic Environ Biotechnol 53:497–504. doi:10.1007/s13580-012-0043-1

    Article  CAS  Google Scholar 

  • Paine CET, Marthews TR, Vogt DR et al (2012) How to fit nonlinear plant growth models and calculate growth rates: An update for ecologists. Methods Ecol Evol 3:245–256. doi:10.1111/j.2041-210X.2011.00155.x

    Article  Google Scholar 

  • Palmer J (1990) Germination and growth of wasabi (Wasabia japonica (Miq.) Matsumura). New Zeal J Crop Horticult Sci 18:161–164. doi:10.1080/01140671.1990.10428089

    Article  Google Scholar 

  • Park SY, Moon HK, Murthy HN, Kim YW (2011) Improved growth and acclimatization of somatic embryo-derived Oplopanax elatus plantlets by ventilated photoautotrophic culture. Biol Plant 55:559–562. doi:10.1007/s10535-011-0125-4

    Article  Google Scholar 

  • Roh KS, Choi BY (2004) Sucrose regulates growth and activation of Rubisco in tobacco leaves in vitro. Biotechnol Bioprocess Eng 9:229–235. doi:10.1007/BF02942298

    Article  CAS  Google Scholar 

  • Salvin S, Bourke M, Byrne T (eds) (2004) The new crop industries handbook. Rural Industries Research and Development Corporation, Canberra

    Google Scholar 

  • Shin KS, Park SY, Paek KY (2013) Sugar metabolism, photosynthesis, and growth of in vitro plantlets of Doritaenopsis under controlled microenvironmental conditions. In vitro Cell Dev Biol Plant 49:445–454. doi:10.1007/s11627-013-9524-x

    Article  CAS  Google Scholar 

  • Smith EF, Gribaudo I, Roberts AV, Mottley J (1992) Paclobutrazol and reduced humidity improve resistance to wilting of micropropagated grapevine. HortScience 27:111–113

    Google Scholar 

  • Soffer H, Burger DW (1988) Effects of dissolved oxygen concentrations in aero-hydroponics on the formation and growth of adventitious roots. J Am Soc Hortic Sci 113:218–221

    Google Scholar 

  • Sparrow A (2009) Increasing the production of Australian wasabi. Rural Industries Research and Development Corporation, Canberra

    Google Scholar 

  • Sultana T, Savage GP (2008) Wasabi—Japanese Horseradish. Bangladesh J Sci Ind Res 43:433–448. doi:10.3329/bjsir.v43i4.2234

    Article  CAS  Google Scholar 

  • Tsay H-S, Lee C-Y, Agrawal DC, Basker S (2006) Influence of ventilation closure, gelling agent and explant type on shoot bud proliferation and hyperhydricity in Scrophularia yoshimurae—A medicinal plant. In vitro Cell Dev Biol Plant 42:445–449. doi:10.1079/IVP2006791

    Article  CAS  Google Scholar 

  • Van der Meeren P, De Vleeschauwer D, Debergh P (2001) Determination of oxygen profiles in agar-based gelled in vitro plant tissue culture media. Plant Cell Tissue Organ Cult 65:239–245. doi:10.1023/A:1010698225362

    Article  Google Scholar 

  • Zobayed SMA, Afreen F, Kubota C, Kozai T (2000) Water control and survival of Ipomoea batatas grown photoautotrophically under forced ventilation and photomixotrophically under natural ventilation. Ann Bot 86:603–610. doi:10.1006/anbo.2000.1225

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yanmar Co. Ltd. for providing wasabi materials and equipment and also Dr. Hajime Furukawa, Osaka Prefecture University, for providing meristem cultures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nhung Ngoc Hoang or Yoshiaki Kitaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, N.N., Kitaya, Y., Morishita, T. et al. A comparative study on growth and morphology of wasabi plantlets under the influence of the micro-environment in shoot and root zones during photoautotrophic and photomixotrophic micropropagation. Plant Cell Tiss Organ Cult 130, 255–263 (2017). https://doi.org/10.1007/s11240-017-1219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1219-2

Keywords

Navigation