Skip to main content
Log in

Chromosome number, genome size, seed storage protein profile and competence for direct somatic embryo formation in Algerian annual Medicago species

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The genome size of eight species from different wild Algerian populations of diploid and one tetraploid Medicago L., initially analysed for chromosome numbers and seed storage proteins, has been assessed by flow cytometry. Genome size ranged from 2C = 0.94 pg in Medicago orbicularis (L.) Bartal. to 2C = 1.80 pg in Medicago laciniata (L.) Miller. The competence for direct somatic embryo formation in liquid medium was studied for 4 of these species having distinct genome sizes: M. orbicularis (2C = 0.94 pg); M. truncatula Gaertn. (2C = 1.08 pg); M. scutellata (L.) Miller (2C = 1.11 pg); M. arabica (L.) Huds. (2C = 1.22 pg). M. orbicularis, with the smallest genome size, formed somatic embryos most quickly, with a high frequency of reactive explants and with numerous somatic embryos per explant. It was followed by M. truncatula, M. scutellata and M. arabica, which in fact represents the order of increasing genome size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barker DG, Bianchi S, Blondon F, Dattée Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49

    Article  CAS  Google Scholar 

  • Bauchan GR, Elgin JH (1984) A new chromosome number for the genus Medicago. Crop Sci 24:193–195

    Article  Google Scholar 

  • Bena G (2001) Molecular phylogeny supports the morphologically based taxonomic transfer of the “Medicagoid” Trigonella species to the genus Medicago L. Plant Syst Evol 229:217–236

    Article  CAS  Google Scholar 

  • Blondon F, Marie D, Brown S, Kondorosi A (1994) Genome size and base composition in Medicago sativa and M. truncatula species. Genome 37:264–270

    Article  CAS  PubMed  Google Scholar 

  • Brown DSW, Atanassov A (1985) Role of genetic background in somatic embryogenesis in Medicago. Plant Cell Tissue Organ Cult 4:111–122

    Article  Google Scholar 

  • Catrice O, de la Peña TC, Brown SC (2006) Applications en biologie végétale: contraintes, succès, espoirs. In: Ronot X, Grunwald D, Mayol JF, Boutonnat J (eds) La cytométrie en flux. Tec & Doc - Lavoisier, Paris, pp 235–253

    Google Scholar 

  • Cook DR (1999) Medicago truncatula—a model in the making! Curr Opin Plant Biol 2:301–304

    Article  CAS  PubMed  Google Scholar 

  • das Neves LO, Duque SRL, Almeida JS, Fevereiro S (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp narborensis and M. truncatula Gaertn cv. Jemalong. Plant Cell Rep 18:398–405

    Article  Google Scholar 

  • Denchev P, Velcheva M, Atanassov A (1991) A new approach to direct somatic embryogenesis in Medicago. Plant Cell Rep 10:338–341

    Article  CAS  PubMed  Google Scholar 

  • Diwan N, Bauchan G, McIntosh M (1994) Medicago scutellata and Medicago rugosa have a natural resistance to the alfalfa weevil: a core collection for the United States annual Medicago germplasm. Crop Sci 34:279–285

    Article  Google Scholar 

  • Eriksson J, Pfeil B (2012) The phylogeny of Medicago (Fabaceae) using the low copy nuclear gene NORK. Degree project for Bachelor of Science in Systematics and Biosystematics and Biodiversity, Biology. 30 hec. University of Gothenburg

  • Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer Nachweis einer Nukleinsäure vom Typus der Thymonukleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe-Seyler’s Z Physiol Chem 135:203–248

    Article  CAS  Google Scholar 

  • Fuentes SI, Suarez R, Villegas T, Acero LC, Hernendez G (1993) Embryogenic response of Mexican alfalfa (Medicago sativa) varieties. Plant Cell Tissue Organ Cult 34:299–302

    Article  Google Scholar 

  • Fyad-Lamèche FZ (1998) Variabilité des protéines de réserve des graines de populations d’espèces annuelles de Medicago, révélée par SDS-PAGE. Acta Bot Gall 145:199–217

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Hanson AA, Barnes DK, Hill RR (1988) Alfalfa and alfalfa improvement. American Society of Agronomy, Madison

    Google Scholar 

  • Iantcheva A, Vlahova M, Bakalova E, Kondorosi E, Elliott MC, Atanassov A (1999) Regeneration of diploid annual medics via direct somatic embryogenesis promoted by thidiazuron and benzylaminopurine. Plant Cell Rep 18:904–910

    Article  CAS  Google Scholar 

  • Iantcheva A, Vlahova M, Trinh TH, Brown SC, Slater A, Elliott MC, Atanassov A (2001) Assessment of polysomaty, embryo formation and regeneration in liquid media for various species of diploid annual Medicago. Plant Sci 160:621–627

    Article  CAS  PubMed  Google Scholar 

  • Iantcheva A, Vlahova M, Atanassov A (2006) Somatic embryogenesis in genera Medicago: an overview. In: Mujib A, Šamaj J (eds) Somatic embryogenesis. Plant Cell Monographs, vol 2. Springer, Berlin, pp 285–304

    Google Scholar 

  • Iantcheva A, Revalska M, Zehirov G, Vassileva V (2014) Agrobacterium-mediated transformation of Medicago truncatula cell suspension culture provides a system for functional analysis. In Vitro Cell Dev Biol Plant 50:149–157

    Article  CAS  Google Scholar 

  • Johnson LB, Stuteville DL, Higgins RK, Skinner DZ (1981) Regeneration of alfalfa plants from protoplasts of selected Regen-S clones. Plant Sci Lett 20:297–304

    Article  Google Scholar 

  • Kharrat-Souissi A, Siljak-Yakovlev S, Brown SC, Chaieb M (2013) Cytogeography of Cenchrus ciliaris (Poaceae) in Tunisia. Folia Geobot 48:95–113

    Article  Google Scholar 

  • Krall JM, Delaney RH, Claypool DA, Groose RW (1996) Evaluation of cold tolerance in annual medics with potential for use in rotation with wheat on the US high plains. Report 35th North American alfalfa improvement Conference, June, Oklahoma City, USA

  • Krishnaraj S, Vasil IK (1995) Somatic embryogenesis in herbaceous monocots. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 155–203

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the heat of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lesins KA, Lesins I (1979) Genus Medicago (Leguminosae): a taxogenetic study. W Junk, Boston, p 228

    Book  Google Scholar 

  • Li XQ, Demarly Y (1995) Characterisation of factors affecting plant regeneration frequency of Medicago lupulina L. Euphytica 86:43–148

    Article  Google Scholar 

  • Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51

    Article  CAS  PubMed  Google Scholar 

  • Maureira-Butler IJ, Pfeil BE, Muangprom A, Osborn TC, Doyle JJ (2008) The reticulate history of Medicago (Fabaceae). Syst Biol 57:466–482

    Article  CAS  PubMed  Google Scholar 

  • Merkle SA, Parott WA, Flinn BS (1995) Morphogenic aspects of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 155–203

    Chapter  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ochatt SJ (2008) Flow cytometry in plant breeding. Cytometry 73A:581–598

    Article  CAS  Google Scholar 

  • Ochatt SJ, Patat-Ochatt EM, Djenanne S (2013) Flow cytometric analysis and molecular characterization of Agrobacterium tumefaciens-mediated transformants of Medicago truncatula. Plant Cell Tiss Organ Cult 113:237–244. doi:10.1007/s11240-012-0263-1

    Article  CAS  Google Scholar 

  • Sangwan R, Bourgeois Y, Brown SC, Vasseur G, Sangwan-Norreel B (1992) Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188:439–456

    Article  CAS  PubMed  Google Scholar 

  • Schmiedernnecht M, Lesins K (1968) Weitere Untersuuchungen zur Resistenz von Medicago-Arten genen Pseudopesiza medicaginis (Lib.). Theor Appl Genet 38:188–194

    Article  Google Scholar 

  • Singh RJ (2010) Plant cytogenetics, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Small E (2011) Alfalfa and relatives: evolution and classification of Medicago. NRC Research Press, Ottowa, p 727

    Google Scholar 

  • Small E, Brookes BS (1990a) A numerical taxonomic analysis of the Medicago littoralisM. truncatula complex. Can J Bot 68:1667–1674

    Article  Google Scholar 

  • Small E, Brookes BS (1990b) A taxonomic simplification of Medicago italica. Can J Bot 68:2103–2111

    Article  Google Scholar 

  • Steele KP, Ickert-Bond SM, Zarre S, Wojciechowski MF (2010) Phylogeny and character evolution in Medicago (Leguminosae): evidence from analyses of plastid TRNK/MATK and nuclear GA3ox1 sequences. Am J Bot 97:1142–1155

    Article  CAS  PubMed  Google Scholar 

  • Trinh H, Ratet P, Kondorosi E, Durand P, Kamate K, Bauer P, Kondorosi A (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa subsp. falcata lines improved in somatic embryogenesis. Plant Cell Rep 17:345–355

    Article  CAS  Google Scholar 

  • Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12:193–201. doi:10.1016/j.pbi.2008.11.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Odile Robin for her competent assistance in karyology, and M. Labdi Mohamed of Experimental Station (ITGC, Sidi-Bel-Abbès) and M. Abdelguerfi Aissa of INA for plant material. The cytometry was done at Imagif now Institute for Integrative Biology of the Cell CNRS, Gif-sur-Yvette, with the help of Danièle De Nay. A Grant to FL from the International Foundation for Science, Stockholm, was appreciated. Anelia Iantcheva benefitted from a bourse d’excellence of the Agence Universitaire de la Francophonie and published part of this data in her research report on embryogenesis: Iantcheva et al. (2003) Biotechnol Equip 17:44–49.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima-Zohra Fyad-Lameche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fyad-Lameche, FZ., Iantcheva, A., Siljak-Yakovlev, S. et al. Chromosome number, genome size, seed storage protein profile and competence for direct somatic embryo formation in Algerian annual Medicago species. Plant Cell Tiss Organ Cult 124, 531–540 (2016). https://doi.org/10.1007/s11240-015-0912-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0912-2

Keywords

Navigation