Skip to main content
Log in

Ectopic expression of the apple Md-miR172e gene alters flowering time and floral organ identity in Arabidopsis

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The miRNA miR172 is involved in the regulation of flowering time and floral organ development by specifically restricting the transcripts of target gene APETELA2 (AP2) transcription factors. In our study, Md-miR172e and its target genes, MdAP2 and MdAP2-1 to MdAP2-7, were isolated from the apple cultivar Royal Gala (Malus × domestica). Phylogenetic tree analysis revealed that eight MdAP2 genes were similar to the AtAP2 subfamily and were putative targets of miR172. qRT-PCR and western blotting analyses indicated Md-miR172e regulation of the expression of the target gene MdAP2 at the translation level. Next, an over-expression construct 35S::Md-miR172e was generated and transformed into Arabidopsis. qRT-PCR showed that Md-miR72e expression and mature miR172e accumulation increased, and transgenic plants exhibited early flowering (20–30 days early in flowering) under long days and floral defects compared with wild-type. Taken together, these results suggest that miR172 and its target AP2-like genes are involved in flower developmental processes, particularly with regards to flowering time and floral organ development, and miR172 mediates a conserved regulatory pathway in apple and Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARF:

Auxin response factor

AP2:

APETELA2

SPL:

Squamosa promoter binding protein-like protein

RT:

Reverse transcriptase

EST:

Expressed sequence tag

CaMV:

Cauliflower mosaic virus

WT:

Wild type

DCL1:

DICER-LIKE 1

TOE1:

TARGET Of EAT 1

SMZ:

SCHLAFMUTZE

SNZ:

SCHNARCHZAPFEN

qRT-PCR:

Quantificational real-time polymerase chain reaction

References

  • Amasino RM, Michaels SD (2010) The timing of flowering. Plant Physiol 154:516–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15(11):2730–2741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Brown RH, Bregitzer P (2011) A insertional mutant of a barley gene results in indeterminate spikelet development. Crop Sci 51(4):1664–1672

    Article  CAS  Google Scholar 

  • Chellappan P, Xia J, Zhou X, Gao S, Zhang X, Coutino G, Vazquez F, Zhang W, Jin H (2010) siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Res 38:6883–6894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303(5666):2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Chen XB, Zhang ZL, Liu DM, Zhang K, Li AL, Mao L (2010) SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol 52:946–951

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39(12):1517–1521

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

  • Feng XM, You CX, Qiao Y, Mao K, Hao YJ (2010) Ectopic overexpression of Arabidopsis AtmiR393a gene changes auxin sensitivity and enhances salt resistance in tobacco. Acta Physiol Plant 32:997–1003

  • Gleave AP, Ampomah-Dwamena CA, Berthold S, Dejnoprat S, Karunairetnam S, Nain B et al (2008) Identification and characterization of primary microRNAs from apple (Malus domestica cv. Royal Gala). Tree Genet Genomes 4:343–358

    Article  Google Scholar 

  • Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21(10):3119–3132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Irish VF (2010) The flowering of Arabidopsis flower development. Plant J 61(6):1014–1028

    Article  CAS  PubMed  Google Scholar 

  • Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF et al (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM (2007) The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19(9):2736–2748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung JH, Lee S, Yun J, Lee M, Park CM (2014) The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning. Plant Sci 215:29–38

    Article  PubMed  Google Scholar 

  • Kawasaki H, Taira K (2003) Short hairpin type of dsRNAs that are controlled by tRNAVal promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res 31(2):700–707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA 102(26):9412–9417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo Y, Guo Z, Li L (2013) Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol 380(2):133–144

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Adam H, Díaz-Mendoza M, Żurczak M, González-Schain ND, Suárez-López P (2009) Graft-transmissible induction of potato tuberization by the microRNA miR172.  Development 136:2873–2881

  • Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M (2009) Repression of flowering by the miR172 target SMZ. PLoS Biol 7(7):e1000148

    Article  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nag A, Jack T (2010) Chapter twelve-sculpting the flower; the role of microRNAs in flower development. Curr Top Dev Biol 91:349–378

    Article  CAS  PubMed  Google Scholar 

  • Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G, Sameria M, Tagiria A, Hondab I, Watanabeb Y, Kanamoric H, Wickerd T, Steine N, Nagamuraa Y, Matsumotoa T, Komatsuda T (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA 107(1):490–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poethig RS (2010) The past, present, and future of vegetative phase change. Plant Physiol 154(2):541–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvit HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Rogers K, Chen XM (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25(7):2383–2399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh PK, Campbell MJ (2013) The interactions of microRNA and epigenetic modifications in prostate cancer. Cancers 5(3):998–1019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68(12):2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Zhao Q, Liu DD, You CX, Hao YJ (2013) Ectopic expression of the apple Md-miRNA156 h gene regulates flower and fruit development in Arabidopsis. Plant Cell Tissue Organ Cult 112(3):343–351

    Article  CAS  Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8(1):37

    Article  PubMed Central  PubMed  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, Weigel D, Poethig RS (2011) MiRNA control of vegetative phase change in Trees. PLoS Genet 7(2):e1002012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Willmann MR, Poethig RS (2007) Conservation and evolution of miRNA regulatory programs in plant development. Curr Opin Plant Biol 10(5):503–511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138(4):750–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

    Article  CAS  PubMed  Google Scholar 

  • Xing LB, Zhang D, Li YM, Zhao CP, Zhang SW, Shen YW, An N, Han MY (2014) Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genom 15(1):1125

    Article  Google Scholar 

  • Yan Z, Hossain MS, Wang J, Valdés-López O, Liang Y, Libault M, Qiu LJ, Stacey G (2013) miR172 regulates soybean nodulation. Mol Plant Microbe Interact 26(12):1371–1377

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Conway SR, Poethig RS (2011) Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development 138:245–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yanik H, Turktas M, Dundar E, Hernandez P, Dorado G, Unver T (2013) Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.). BMC Plant Biol 13(1):10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen XM, Schmid M (2010) Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22(7):2156–2170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu HP, Song CG, Jia QD, Wang C, Li F, Nicholas KK et al (2010) Computational identification of microRNAs in apple expressed sequence tags and validation of their precise sequences by miR-RACE. Physiol Plantarum 141:56–70

    Article  Google Scholar 

  • Zhu JK (2008) Reconstituting plant miRNA biogenesis. Proc Natl Acad Sci USA 29:9851–9985

    Article  Google Scholar 

  • Zhu QH, Helliwell CA (2010) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:9

    Google Scholar 

  • Zhu QH, Upadhyaya NM, Gubler F, Helliwell CA (2009) Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol 9(1):149

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (31171946), PCSIRT (IRT1155) and 948 Project from Ministry of Agriculture of China (2011-G21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Xiang You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Sun, C., Liu, DD. et al. Ectopic expression of the apple Md-miR172e gene alters flowering time and floral organ identity in Arabidopsis . Plant Cell Tiss Organ Cult 123, 535–546 (2015). https://doi.org/10.1007/s11240-015-0857-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0857-5

Keywords

Navigation