Skip to main content
Log in

Ectopic expression of the apple Md-miRNA156h gene regulates flower and fruit development in Arabidopsis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The microRNA miR156 is involved in the regulation of plant growth and development by specifically restricting the transcripts of target genes. In this study, the Md-miR156h gene and its target cDNA fragments, specifically, MdSPL2a-b, MdSPL4, MdSPL6a-g, MdSPL9a-b, MdSPL13a-e and MdSPL15, were isolated from the apple cultivar ‘Gala’. Phylogenetic analysis showed that 18 MdSPL genes were putative targets of miR156. Subsequently, the expression construct p35S:Md-miR156h was created and transformed into Arabidopsis plants. Expression analysis showed that Md-miR156h transcripts and mature miR156 accumulation increased, while its target transcripts AtSPL9 and AtSPL15 were downregulated in transgenic Arabidopsis plants. As a result, the transgenic plants exhibited an extended juvenile phase, increased numbers of leaves, short siliques and the partial abortion of seeds compared with the WT control plants. These results demonstrate that miR156 and its target SPL genes are involved in various developmental processes, especially flower development, and miR156 mediates a conserved post-transcriptional regulation pathway in the apple and Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARF:

Auxin response factor

SPL:

Squamosa promoter binding protein-like protein

MRE:

MiRNA-responsive element

LFY:

LEAFY

FUL:

FRUITFULL

AP1:

APETALA1

RT:

Reverse transcriptase

EST:

Expressed sequence tag

CaMV:

Cauliflower mosaic virus

WT:

Wild type

IPA1:

Ideal plant architecture 1

WFP:

WEALTHY FARMER′S PANICLE

References

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125(4):655–664

    Article  PubMed  CAS  Google Scholar 

  • Cardon GH, Hohmann S, Nettesheim K, Saedler H, Huijser P (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12:367–377

    Article  PubMed  CAS  Google Scholar 

  • Cardon G, Hohmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237:91–104

    Article  PubMed  CAS  Google Scholar 

  • Chen CF, Ridzon DA, Broomer AJ, Zhou ZH, Lee DH, Nguyen JT et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:179–187

    Article  Google Scholar 

  • Chen XB, Zhang ZL, Liu DM, Zhang K, Li AL, Mao L (2010) SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol 52:946–951

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549

    Article  PubMed  CAS  Google Scholar 

  • Fornara F, Coupland G (2009) Plant phase transitions make a SPLash. Cell 138:625–626

    Article  PubMed  CAS  Google Scholar 

  • Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693

    Article  PubMed  CAS  Google Scholar 

  • Gleave AP, Ampomah-Dwamena CA, Berthold S, Dejnoprat S, Karunairetnam S, Nain B et al (2008) Identification and characterization of primary microRNAs from apple (Malus domestica cv. Royal Gala). Tree Genet Genomes 4:343–358

    Article  Google Scholar 

  • Guo AY, Zhu QH, Gu X, Ge S, Yang J, Luo J (2008) Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene 418:1–8

    Article  PubMed  CAS  Google Scholar 

  • Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF et al (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544

    Article  PubMed  CAS  Google Scholar 

  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA et al (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    Article  PubMed  CAS  Google Scholar 

  • Klein J, Saedler H, Huijser P (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet 250:7–16

    PubMed  CAS  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed  CAS  Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  PubMed  CAS  Google Scholar 

  • Martin RC, Liu PP, Goloviznina NA, Nonogaki H (2010) microRNA, seeds, and Darwin?: diverse function of miRNA in seed biology and plant responses to stress. J Exp Bot 61:2229–2234

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K et al (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549

    Article  PubMed  CAS  Google Scholar 

  • Moreno MA, Harper LC, Krueger RW, Dellaporta SL, Freeling M (1997) Liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev 11:616–628

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Poethig RS (2010) The past, present, and future of vegetative phase change. Plant Physiol 154(2):541–544

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Röbbelen G (1957) Über Heterophyllie bei Arabidopsis thaliana (L.) Heynh. Ber Dtsch Bot Ges 7:39–44

    Google Scholar 

  • Ruth CM, Masashi A, Po-Pu L, Jessica RK, Jennifer LC, Wioletta EP et al (2010) The microRNA156 and microRNA172 gene regulation cascades at post-germinative stages in Arabidopsis. Seed Sci Res 20:79–87

    Article  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNA on the plant transcriptome. Dev Cell 8:517–527

    Article  PubMed  CAS  Google Scholar 

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195

    Article  PubMed  CAS  Google Scholar 

  • Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M (2009) Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol 50:2133–2145

    Article  PubMed  CAS  Google Scholar 

  • Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruv-kun G (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5:659–669

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H, Huijser P (2003) SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 15:1009–1019

    Article  PubMed  CAS  Google Scholar 

  • Usami T, Horiguchi G, Yano S, Tsukaya H (2009) The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 136:955–964

    Article  PubMed  CAS  Google Scholar 

  • Vazquez F, Gasciolli V, Crété P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351

    PubMed  CAS  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20:1231–1243

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Park MY, Wang LJ, Koo Y, Chen XY et al (2011) MiRNA control of vegetative phase change in trees. PLoS Genet 7(2):e1002012

    Article  PubMed  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  PubMed  CAS  Google Scholar 

  • Xie KB, Wu CQ, Xiong LZ (2006) Genomic organization, differential expression and interaction of SQUAMOSA Promoter-Binding-Like transcription factors and microRNA156 in rice. Plant Physiol 142:280–293

    Article  PubMed  CAS  Google Scholar 

  • Xing SP, Salinas M, Höhmann S, Berndtgen R, Huijsera P (2010) miR156-Targeted and Nontargeted SBP-Box Transcription Factors Act in Concert to Secure Male Fertility in Arabidopsis. Plant Cell 22:3935–3950

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, Wagner D (2009) The microRNA-regulated SBP-Box transcription factor SPL3 Is a direct upstream activator of LEAFY, FRUITFULL and APETALA1. Dev Cell 17:268–278

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Wan X, Gu S, Hu Z, Xu H, Xu C (2008) Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 407:1–11

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Conway SR, Poethig RS (2011) Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development 138:245–249

    Article  PubMed  CAS  Google Scholar 

  • Yu HP, Song CG, Jia QD, Wang C, Li F, Nicholas KK et al (2010) Computational identification of microRNAs in apple expressed sequence tags and validation of their precise sequences by miR-RACE. Physiol Plant 141:56–70

    Article  PubMed  Google Scholar 

  • Zhang Y, Schwarz S, Saedler H, Huijser P (2007) SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol Biol 63:429–443

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Zhou J, Han S, Yang W, Li W, Wei H et al (2010) Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophys Res Commun 398:355–360

    Article  PubMed  CAS  Google Scholar 

  • Zhang XH, Zou Z, Zhang JH, Zhang YY, Han QQ, Hu TX et al (2011) Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Lett 585:435–439

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2008) Reconstituting plant miRNA biogenesis. Proc Natl Acad Sci USA 29:9851–9852

    Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (31171946), PCSIRT (IRT1155) and 948 Project from Ministry of Agriculture of China (2011-G21).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Xiang You or Yu-Jin Hao.

Additional information

Chao Sun and Qiang Zhao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Zhao, Q., Liu, D. et al. Ectopic expression of the apple Md-miRNA156h gene regulates flower and fruit development in Arabidopsis . Plant Cell Tiss Organ Cult 112, 343–351 (2013). https://doi.org/10.1007/s11240-012-0241-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0241-7

Keywords

Navigation