Skip to main content
Log in

Structural Properties of Silicon Carbide Nano Structures Grown on Quartz Substrate Using CVD Method

  • Published:
Theoretical and Experimental Chemistry Aims and scope

An Erratum to this article was published on 01 July 2017

This article has been updated

Silicon carbide (SiC) nanostructures were obtained by the chemical deposition of hexamethyldisiloxane (C6H18OSi2) from the vapor phase onto quartz with a supported cobalt catalyst. A study was carried out on the structural and optical properties of the SiC nanostructures obtained at 650, 700, 750, and 800 °C using scanning electron microscopy, XRD, and electron spectroscopy. All the films were found to have crystalline structure. The optical transmittance in the visible region increases with increasing synthesis temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 14 August 2017

    An erratum to this article has been published.

References

  1. S. Talu, S. Stach, T. Ghodselahi, et al., J. Phys. Chem. B, 119, 5662-5670 (2015).

    Article  CAS  Google Scholar 

  2. S. Talu, S. Stach, S. Solaymani, et al., J. Electroanal. Chem., 749, 31-41 (2015).

    Article  CAS  Google Scholar 

  3. S. Talu, Z. Markovics, S. Stach, et al., Appl. Surface Sci., 289, 97-106 (2014).

    Article  CAS  Google Scholar 

  4. S. Stach, Z. Garczyk, S. Talu, et al., J. Phys. Chem. C, 119, 17887-17898 (2015).

    Article  CAS  Google Scholar 

  5. A. Armana, T. Ghodselahib, S. Solaymani, et al., Proc. Met. Phys. Chem. Surfaces, 51, No. 4, 575-578 (2015).

    Article  Google Scholar 

  6. V. A. Dmitriev, Status of SiC Technology: Bulk and Epitaxial Growth, International Technology Research Institute, Technology Transfer (TTEC) Division (2000) (TTEC Panel Report on High-Temperature Electronics in Europe, Chap. 2).

  7. D. Z. Wang, H. X. Peng, J. Liu, et al., Wear, 184, 187-192 (1995).

    Article  CAS  Google Scholar 

  8. I. Garcia, J. Fransaer, and J. P. Celis, Surface Coat. Technol., 148, 171 (2001).

    Article  CAS  Google Scholar 

  9. P. Colomban, Silicon Carbide – Materials, Processing, and Applications in Electronic Devices, M. Mukherjee (ed.), InTech (2011).

  10. H. Matsunami, Jpn. J. Appl. Phys., 43, 6835-6847 (2004).

    Article  CAS  Google Scholar 

  11. J. Mazumder and A. Kar, Theory and Applications of Laser Chemical Vapor Deposition, Plenum Press, New York (1995).

    Book  Google Scholar 

  12. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science, 277, 1971-1975 (1997).

    Article  CAS  Google Scholar 

  13. X. D. Han, Y. F. Zhang, K. Zheng, et al., Nano Lett., 7, 452 (2007).

    Article  CAS  Google Scholar 

  14. H. W. Shim, J. D. Kuppers, and H. C. Huang, Nanotechnology, 025704 (2009).

  15. S. Z. Deng, Z. B. Li, W. L. Wang, et al., Appl. Phys. Lett., 89, 023118 (2006).

    Article  Google Scholar 

  16. Z. W. Pan, H. L. Lai, F. C. K. Au, et al., Adv. Mater., 12, 1186-1190 (2000).

    Article  CAS  Google Scholar 

  17. G. W. Meng, L. D. Zhang, C. M. Mo, et al., J. Mater. Res., 13, 2533-2538 (1998).

    Article  CAS  Google Scholar 

  18. S. Z. Deng, Z. S. Wu, J. Zhou, et al., Chem. Phys. Lett., 256, 511 (2002).

    Article  Google Scholar 

  19. J. J. Niu, J. N. Wang, and Q. F. Xu, Langmuir, 6918 (2008).

  20. W. S. Shi, Y. F. Zheng, H. Y. Peng, et al., J. Am. Chem. Soc., 83, 3228 (2000).

    CAS  Google Scholar 

  21. J. Wei, K. Z. Li, H. J. Li, et al., Mater. Chem. Res., 95, 140 (2006).

    CAS  Google Scholar 

  22. S. A. Rakha, Z. Xintai, D. Zhu, and Y. Guojun, Curr. Appl. Phys., 10, 171 (2010).

    Article  Google Scholar 

  23. 23. J. Pfeifer, Encyclopedia of Reagents for Organic Synthesis, L. Paquette (ed.), J. Wiley & Sons, New York (2004), doi: 10.1002/047084289.

    Google Scholar 

  24. H. Lin, J. A. Gerbec, M. Sushkhid, and E. W. McFarland, Nanotechnology, 19, 325601 (2008).

    Article  Google Scholar 

  25. V. Kopustinskas, S. Meskinis, V. Grigaliunas, et al., Surface Coat. Technol., 151, 180-183 (2002).

    Article  Google Scholar 

  26. V. Kopustinskas, S. Meskinis, S. Tamulevièius, et al., Surface Coat. Technol., 200, 6240-6244 (2006).

    Article  CAS  Google Scholar 

  27. F. Roccaforte, F. Giannazzo, F. Iucolano, et al., Appl. Surface Sci., 256, 5727-5735 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mahmoodi.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 52, No. 4, pp. 256-261, July-August, 2016.

An erratum to this article is available at https://doi.org/10.1007/s11237-017-9518-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, A., Ghoranneviss, M. & Mehrani, K. Structural Properties of Silicon Carbide Nano Structures Grown on Quartz Substrate Using CVD Method. Theor Exp Chem 52, 259–264 (2016). https://doi.org/10.1007/s11237-016-9477-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-016-9477-3

Key words

Navigation