Skip to main content
Log in

Distributed space-time coding scheme with differential detection and power allocation for cooperative relay network

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

By introducing orthogonal space-time coding (STC) scheme in wireless cooperative relay network, two distributed differential STC (DSTC) schemes based on the amplify-and-forward (AF) and decode-and- forward (DF) methods are, respectively, developed. The scheme performance is investigated in symmetric and asymmetric wireless relay networks. The presented schemes require no channel information at both relay terminals and destination terminal, and have linear decoding complexity when compared with the existing scheme. Moreover, they are suitable for the application of different constellation modulations and DSTC schemes, and thus provide more freedoms of design. Besides, the power allocations between source and relay terminals are jointly optimized to minimize the system pairwise error probability for symmetric and asymmetric networks, and two practical methods are presented to solve the complicated optimized problem from asymmetric network. Simulation results show that the scheme with DF method has better performance than that with AF method due to no amplification of noise power, but the performance superiority will decrease at high SNR due to the error propagation of decoding at the relays. Furthermore, the distributed DSTC schemes with optimal power allocation have better performance than those with conventional fixed power allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chu, S., Wang, X., & Yang, Y. (2013). Exploiting cooperative relay for high performance communications in MIMO ad hoc networks. IEEE Transactions on Computers, 62, 716–729.

    Article  Google Scholar 

  2. Jing, J., & Hassibi, B. (2006). Distributed space-time coding in wireless networks. IEEE Transactions on Wireless Communications, 12, 3524–3536.

    Article  Google Scholar 

  3. Sugiura, S., Xin, N. S., Kong, L., Chen, S., & Hanzo, L. (2012). Quasi-synchronous cooperative networks: A practical cooperative transmission protocol. IEEE Vehicular Technology Magazine, 7, 66–76.

    Article  Google Scholar 

  4. Laneman, J. N., & Wornell, G. W. (2003). Distributed space-time-coded protocols for exploiting cooperative diversity in wireless network. IEEE Transactions on Information Theory, 49, 2415–2425.

    Article  Google Scholar 

  5. Zhao, Q., & Li, H. (2007). Differential modulatin for cooperative wireless systems. IEEE Transactions on Signal Processing, 55, 2273–2283.

    Article  Google Scholar 

  6. Wang, G., Zhang, Y., & Amin, M. (2006). Differential distributed space-time modulation for cooperative networks. IEEE Transactions on Wireless Communicaitons, 5, 3097–3108.

    Article  Google Scholar 

  7. Tarasak, P., Minn, H., & Bhargava, V. K. (2005). Differential modulation for two-user cooperative diversity systems. IEEE Journal on Selected Area in Communications, 23, 1891–1900.

    Article  Google Scholar 

  8. Bansal, A., Bhatnagar, M. R., & Hjørungnes, A. (2013). Decoding and performance bound of demodulate-and-forward based distributed Alamouti STBC. IEEE Transactions on Wireless Communications, 12, 702–713.

    Article  Google Scholar 

  9. Chen, D., & Laneman, J. N. (2006). Modulation and demodulation for cooperative diversity in wireless systems. IEEE Transactions on Wireless Communications, 5, 1785–1794.

    Article  Google Scholar 

  10. Ma, S., & Zhang, J.-K. (2011). Noncoherent diagonal distributed space-time block codes for amplify-and-forward half-duplex cooperative relay channels. IEEE Transactions on Vehicular Technology, 60, 2400–2405.

    Article  Google Scholar 

  11. Himsoon, T., Su, W., & Liu, K. J. R. (2005). Differential transmission for amplify-and-forward cooperative communications. IEEE Signal Processing Letters, 12, 597–600.

    Article  Google Scholar 

  12. Yiu, S., Schober, R., & Lampe, L. (2005). Differential distributed space-time block coding. In Proceeding IEEE PACRIM’05 (pp. 53–56). Victoria, BC.

  13. Zhang, Y. (2005). Differential modulation schemes for decode-and-forward cooperative diversity. In Proceeding IEEE ICASSP’05 (pp. 917–920). Philadelphia, PA.

  14. Maham, B., & Lahouti, F. (2006). Cooperative communication using distributed differential space-time codes. In Proceeding International Conference on Wireless Communications, Networking and Mobile Computing 06 (pp. 1–5). China.

  15. Kiran, T., & Rajan, B. S. (2007). Partially-coherent distributed space-time codes scheme with differential encoder and decoder. IEEE Journal on Selected Area in Communications., 25, 426–433.

    Article  Google Scholar 

  16. Cho, W., & Yang, L. (2006). Distributed differential schemes for cooperative wireless Networks. In Proceeding IEEE ICASSP’06 (pp. 61–64). Toulouse.

  17. Ganesan, G., & Stoica, P. (2002). Differential modulation using space-time block codes. IEEE Signal Processing Letter, 9, 57–60.

    Article  Google Scholar 

  18. Huo, Q., Song, L., Li, Y., & Jiao, B. (2012). A distributed differential space-time coding scheme with analog network coding in two-way relay networks. IEEE Transactions on Signal Processing, 60, 4998–5004.

    Article  Google Scholar 

  19. Tarokh, V., & Jafarkhani, H. (2000). A differential detection scheme for transmit diversity. IEEE Journal on Selected Area in Communications, 18, 1169–1174.

    Article  Google Scholar 

  20. Hughes, B. L. (2000). Differential space-time modulation. IEEE Transactions on Information Theory, 46, 2567–2578.

    Article  Google Scholar 

  21. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44, 744–765.

    Article  Google Scholar 

  22. Fan, S. (1989). A new extracting formula and a new distinguishing means on the one variable cubic equation. Natural Science Journal of Hainan Teachers College, 2, 91–98. (in Chinese).

    Google Scholar 

  23. https://en.wikipedia.org/wiki/Cubic_function.

  24. Zheng, L., & Tse, D. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49, 1073–1096.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous reviewers for their valuable comments which considerably improved the paper. This work is supported by Fundamental Research Funds for the Central Universities of NUAA (NJ20150014), Research Found of Nanjing Institute of Technology (281240626216068), and National Natural Science Foundation of China (61271255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiye Xu.

Appendices

Appendix 1

In this appendix, we will give the derivation of the optimized objective function in (19). For analysis simplicity, we consider two-relay cases (the extension to multi-relay cases will be straightforward).

By using the related results from [2] and [21], and averaging the above (18) on \(\mathbf{x}_{i-1}\), the following inequality will be obtained.

$$\begin{aligned} \Pr \left( \mathbf{D}\rightarrow \mathbf{E}\right) \le \mathop E\limits _{\left\{ \beta _{ik} \right\} } \left\{ {{\det }^{-1}\left[ {\mathbf{I}_2 +E_s /\left( 4\kappa N_0 \right) \mathbf{BF}} \right] } \right\} \end{aligned}$$
(46)

where \(\mathbf{F}=\hbox {diag}\{|\beta _{i1}|^{2},|\beta _{i2}|^{2}\},\,\mathbf{B}=\mathbf{G}^{H}{} \mathbf{PS}_{i-1}^H \mathbf{C}^{H}{} \mathbf{CS}_{i-1} \mathbf{PG}\). Since \(\mathbf{B}=\mathbf{B}^{H}\), B is a Hermitian matrix. Let \(\lambda _{v} (v=1,2)\) be the two eigenvalues of matrix B, then det \((\mathbf{B})=\lambda _{1}\lambda _{2}\) .Thus according to the analysis of [21], there exists an unitary matrix W such that \(\mathbf{WBW}^{H}=\hbox {diag}\{\lambda _{1}, \lambda _{2}\}\). Moreover, \(\lambda _{1}\) and \(\lambda _{2}\) are nonnegative real values due to the fact that B is also a nonnegative-definite Hermitian matrix. Based on the analysis above, we will have:

$$\begin{aligned}&\det \left[ {\mathbf{I}_2 +E_s /(4\kappa N_0 )\mathbf{BF}} \right] \nonumber \\&\quad =\det \left[ {\mathbf{I}_2 +E_s /(4\kappa N_0 )\mathbf{W}^{H}\hbox {diag}\left\{ \lambda _1 ,\lambda _2 \right\} \mathbf{WF}} \right] \nonumber \\&\quad =\det \left[ {\mathbf{I}_2 +E_s /\left( 4\kappa N_0 \right) \hbox {diag}\left\{ \lambda _1 ,\lambda _2 \right\} \mathbf{Q}} \right] \end{aligned}$$
(47)

where \(\mathbf{Q}=\mathbf{WFW}^{H}=[q_{11}\, q_{12};\,q_{21} \, q_{22}]\). Let \(\mathbf{w}_{1}=[w_{11},\,w_{21}]^{T}\) and \(\mathbf{w}_{2}=[w_{12},\,w_{22}]^{T}\) be two column vectors of W, then \(q_{11}=|\beta _{i1}|^{2}|w_{11}|^{2}+|\beta _{i2}|^{2}|w_{12}|^{2}>0\), and \(q_{22}=|\beta _{i1}|^{2}|w_{21}|^{2}+|\beta _{i2}|^{2}|w_{22}|^{2}>0\). Considering that \(\lambda _{1},\,\lambda _{2}\) and \(E_{s}/(4\kappa N_{0})\) are nonnegative, (47) can be changed to

$$\begin{aligned}&\det \left[ {\mathbf{I}_2 +E_s /(4\kappa N_0 )\mathbf{BF}} \right] \nonumber \\&\quad =\left[ 1+q_{11} \lambda _1 E_s /(4\kappa N_0 )\right] \left[ 1+q_{22} \lambda _2 E_s /(4\kappa N_0 )\right] \nonumber \\&\qquad -\,\lambda _1 \lambda _2 \left[ E_s /(4\kappa N_0 )\right] ^{2}q_{12} q_{21} \nonumber \\&\quad \ge q_{11} \lambda _1 E_s /(4\kappa N_0 )q_{22} \lambda _2 E_s /(4\kappa N_0 )\nonumber \\&\quad -\,\lambda _1 \lambda _2 \left[ E_s /(4\kappa N_0 )\right] ^{2}q_{12} q_{21} \nonumber \\&\quad =\lambda _1 \lambda _2 \left[ E_s /(4\kappa N_0 )\right] ^{2}\det (\mathbf{Q}) \end{aligned}$$
(48)

Substituting (48) into (46), the PEP is rewritten as

$$\begin{aligned} \Pr \left( \mathbf{D}\rightarrow \mathbf{E}\right)\le & {} \mathop {E}\limits _{\left\{ \beta _{ik} \right\} } \left\{ {\left[ \left( E_s /\left( 4N_0 \right) \right) ^{2}\lambda _1 \lambda _2 /\kappa ^{2}\right] ^{-1}\det ^{-1}(\mathbf{Q})} \right\} \nonumber \\= & {} \left( E_s /N_0 \right) ^{-2}\mathop {E}\limits _{\left\{ \beta _{ik}\right\} } \left\{ {\left[ 4^{-2}\lambda _1 \lambda _2 /\kappa ^{2}\right] ^{-1}\det ^{-1}(\mathbf{Q})} \right\} \nonumber \\ \end{aligned}$$
(49)

According to the definition of the diversity gain [24], using (49), we can evaluate the diversity gain \(G_{d}\) as follows:

$$\begin{aligned} G_d =\mathop {\lim }\limits _{E_s /N_0 \rightarrow \infty } -\frac{\log \left( \Pr \left( \mathbf{D}\rightarrow \mathbf{E}\right) \right) }{\log (E_s /N_0 )}=2+0=2 \end{aligned}$$
(50)

Hence, the system achieves full diversity order of 2 for two-relay case. Similarly, we can use the above analytical method to derive the diversity gain of the system with multiple relays. Namely, full diversity order of K will be obtained.

Besides, from (49), it is found that the PEP will be minimized when \(\lambda _{1}\lambda _{2}/\kappa ^{2}\) (i.e. \(\hbox {det}(\mathbf{B})/\kappa ^{2})\) is maximized. According to the definition of matrix G and B, we have:

$$\begin{aligned} \det (\mathbf{B})= & {} \det \left( \mathbf{G}^{H}{} \mathbf{PS}_{i-1}^H \mathbf{C}^{H}\mathbf{CS}_{i-1} \mathbf{PG}\right) \nonumber \\= & {} \det \left( \mathbf{G}^{H}{} \mathbf{G}\right) \det \left( \mathbf{P}^{2}\right) \det (\mathbf{C}^{H}\mathbf{C}) \nonumber \\= & {} \rho _{s1}^2 \rho _{s2}^2 \rho _{1d}^2 \rho _{2d}^2 \mu _1 \mu _2 P_0^2 P_1 P_2 \det \left( \mathbf{C}^{H}{} \mathbf{C}\right) \nonumber \\= & {} \zeta \mu _1 \mu _2 P_0^2 P_1 P_2 \det \left( \mathbf{C}^{H}\mathbf{C}\right) \end{aligned}$$
(51)

where \(\zeta =\rho _{s1}^2 \rho _{s2}^2 \rho _{1d}^2 \rho _{2d}^2 \), and \(\mathbf{S}_{i-1}^{H}{} \mathbf{S}_{i-1}=\mathbf{I}_{2}\) is utilized. Since \(\zeta \) and \(\hbox {det}(\mathbf{C}^{H}{} \mathbf{C})\) are independent of the power optimization, we only need to optimize \(\mu _1 \mu _2 P_0^2 P_1 P_2 /\kappa ^{2}\). Based on this, subject to the total power constraint, we may establish the optimized objective function shown as (19).

Appendix 2

In this appendix, we give the derivation of (29). With (28), setting \(\partial \mathcal{L}/\partial P_v =0\,(v=0,1,2)\) yields

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial P_0 }= & {} \frac{2P_0 P_1 P_2 \left[ 2P_0^2 \rho _{s1}^2 \rho _{s2}^2 +3N_0 P_0 \left( \rho _{s1}^2 +\rho _{s2}^2 \right) +4N_0^2 \right] }{\left[ P_1 P_0 \rho _{1d}^2 \rho _{s2}^2 +P_2 P_0 \rho _{2d}^2 \rho _{s1}^2 +P_0^2 \rho _{s1}^2 \rho _{s2}^2 +2N_0 \left( P_1 \rho _{1d}^2 +P_2 \rho _{2d}^2 +P_0 \rho _{s1}^2 +P_0 \rho _{s2}^2 \right) +4N_0^2 \right] ^{2}} \nonumber \\&-\,\frac{2P_0^2 P_1 P_2 \left[ P_0^2 \rho _{s1}^2 \rho _{s2}^2 +2N_0 P_0 \left( \rho _{s1}^2 +\rho _{s2}^2 \right) +4N_0^2 \right] \left[ P_1 \rho _{1d}^2 \rho _{s2}^2 +P_2 \rho _{2d}^2 \rho _{s1}^2 +2P_0 \rho _{s1}^2 \rho _{s2}^2 +2N_0 \left( \rho _{s1}^2 +\rho _{s2}^2 \right) \right] }{\left[ P_1 P_0 \rho _{1d}^2 \rho _{s2}^2 +P_2 P_0 \rho _{2d}^2 \rho _{s1}^2 +P_0^2 \rho _{s1}^2 \rho _{s2}^2 +2N_0 \left( P_1 \rho _{1d}^2 +P_2 \rho _{2d}^2 +P_0 \rho _{s1}^2 +P_0 \rho _{s2}^2 \right) +4N_0^2 \right] ^{3}}-2\eta =0\nonumber \\ \end{aligned}$$
(52a)
$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial P_1 }= & {} \frac{P_0^2 P_2 \left[ P_0^2 \rho _{s1}^2 \rho _{s2}^2 +2N_0 P_0 \left( \rho _{s1}^2 +\rho _{s2}^2 \right) +4N_0^2 \right] }{\left[ P_1 P_0 \rho _{1d}^2 \rho _{s2}^2 +P_2 P_0 \rho _{2d}^2 \rho _{s1}^2 +P_0^2 \rho _{s1}^2 \rho _{s2}^2 +2N_0 \left( P_1 \rho _{1d}^2 +P_2 \rho _{2d}^2 +P_0 \rho _{s1}^2 +P_0 \rho _{s2}^2 \right) +4N_0^2 \right] ^{2}} \nonumber \\&-\,\frac{2P_0^2 P_1 P_2 \left[ P_0^2 \rho _{s1}^2 \rho _{s2}^2 +2N_0 P_0 \left( \rho _{s1}^2 +\rho _{s2}^2 \right) +4N_0^2 \right] \left[ P_0 \rho _{1d}^2 \rho _{s2}^2 +2N_0 \rho _{1d}^2 )\right] }{\left[ P_1 P_0 \rho _{1d}^2 \rho _{s2}^2 +P_2 P_0 \rho _{2d}^2 \rho _{s1}^2 +P_0^2 \rho _{s1}^2 \rho _{s2}^2 +2N_0 \left( P_1 \rho _{1d}^2 +P_2 \rho _{2d}^2 +P_0 \rho _{s1}^2 +P_0 \rho _{s2}^2 \right) +4N_0^2 \right] ^{3}}-\eta =0 \end{aligned}$$
(52b)
$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial P_2 }= & {} \frac{P_0^2 P_1 \left[ P_0^2 \rho _{s1}^2 \rho _{s2}^2 +2N_0 P_0 \left( \rho _{s1}^2 +\rho _{s2}^2 \right) +4N_0^2 \right] }{\left[ P_1 P_0 \rho _{1d}^2 \rho _{s2}^2 +P_2 P_0 \rho _{2d}^2 \rho _{s1}^2 +P_0^2 \rho _{s1}^2 \rho _{s2}^2 +2N_0 \left( P_1 \rho _{1d}^2 +P_2 \rho _{2d}^2 +P_0 \rho _{s1}^2 +P_0 \rho _{s2}^2 \right) +4N_0^2 \right] ^{2}} \nonumber \\&-\,\frac{2P_0^2 P_1 P_2 \left[ P_0^2 \rho _{s1}^2 \rho _{s2}^2 +2N_0 P_0 \left( \rho _{s1}^2 +\rho _{s2}^2 \right) +4N_0^2 \right] \left[ P_0 \rho _{2d}^2 \rho _{s1}^2 +2N_0 \rho _{2d}^2 )\right] }{\left[ P_1 P_0 \rho _{1d}^2 \rho _{s2}^2 +P_2 P_0 \rho _{2d}^2 \rho _{s1}^2 +P_0^2 \rho _{s1}^2 \rho _{s2}^2 +2N_0 \left( P_1 \rho _{1d}^2 +P_2 \rho _{2d}^2 +P_0 \rho _{s1}^2 +P_0 \rho _{s2}^2 \right) +4N_0^2 \right] ^{3}}-\eta =0 \end{aligned}$$
(52c)

Using Eqs. (52a) and (52b), we have:

$$\begin{aligned}&\left( P_0 \rho _{s1}^2 +2N_0 \right) \rho _{2d}^2 \left[ \left( \rho _{s1}^2 \rho _{s2}^2 P_0^2 +4N_0^2 \right) \left( P_0 -P_1 \right) \right. \nonumber \\&\qquad \left. +\,2P_0^2 N_0 \left( \rho _{s1}^2 +\rho _{s2}^2 \right) -P_0 P_1 N_0 \left( \rho _{s1}^2 +3\rho _{s2}^2 \right) \right] P_2 \nonumber \\&\quad =\left( P_0 \rho _{s2}^2 +2N_0 \right) \left[ \left( P_0 \rho _{s1}^2 +2N_0 \right) \left( \rho _{s2}^2 \rho _{1d}^2 P_0^2 \right. \right. \nonumber \\&\qquad \left. +\,\rho _{s1}^2 P_0 N_0 +\rho _{s2}^2 P_0 N_0 +2\rho _{1d}^2 P_0 N_0 +4N_0^2 \right) P_1 \nonumber \\&\qquad +\,\left( \rho _{s1}^2 \rho _{s2}^2 P_0^2 +\rho _{s2}^2 P_0 N_0 +3\rho _{s1}^2 P_0 N_0 +4N_0^2 \right) \rho _{1d}^2 P_1^2 \nonumber \\&\qquad \left. -\left( P_0 \rho _{s2}^2 +2N_0 \right) \left( P_0 \rho _{s1}^2 +2N_0 \right) ^{2}P_0 \right] \end{aligned}$$
(53)

With equations (52b) and (52c), we can further obtain:

$$\begin{aligned}&\left( P_0 \rho _{s1}^2 +2N_0 \right) \rho _{2d}^2 P_2^2 +\left[ 2N_0 P_0 \left( \rho _{s1}^2 +\rho _{s2}^2 \right) \right. \nonumber \\&\qquad +\,2N_0 P_1 \left( \rho _{2d}^2 -\rho _{1d}^2 \right) +P_0 P_1 \left( \rho _{s1}^2 \rho _{2d}^2 -\rho _{s2}^2 \rho _{1d}^2 \right) \nonumber \\&\qquad \left. +\,P_0^2 \rho _{s1}^2 \rho _{s2}^2 \right] P_2\nonumber \\&\quad =\left( P_0 \rho _{s2}^2 +2N_0 \right) \left( P_0 \rho _{s1}^2 +2N_0 +P_1 \rho _{1d}^2 \right) P_1 \end{aligned}$$
(54)

According to the power constraint condition \(2P_{0}+P_{1}+P_{2}=P_{t}\), \(P_{2}\) is rewritten as

$$\begin{aligned} P_2 =P_t -2P_0 -P_1 . \end{aligned}$$
(55)

Substituting (55) into (54) gives

$$\begin{aligned}&\left[ 2\left( \rho _{s1}^2 \rho _{2d}^2 +\rho _{s2}^2 \rho _{1d}^2 -\rho _{s1}^2 \rho _{s2}^2 \right) P_0^2 \right. \nonumber \\&\qquad +\,4P_0 N_0 \left( \rho _{1d}^2 +\rho _{2d}^2 -\rho _{s1}^2 -\rho _{s2}^2 \right) -2P_t N_0 \left( \rho _{1d}^2 +\rho _{2d}^2 \right) \nonumber \\&\quad \quad \left. -\,P_0 P_t \left( \rho _{s1}^2 \rho _{2d}^2 +\rho _{s2}^2 \rho _{1d}^2 \right) -8N_0^2 \right] P_1 =\left( P_0 \rho _{s1}^2 +2N_0 \right) \nonumber \\&\quad \left( -P_t +2P_0 \right) \left( P_0 \rho _{s2}^2 +P_t \rho _{2d}^2 -2P_0 \rho _{2d}^2 +2N_0 \right) \end{aligned}$$
(56)

Substituting (55) and (56) into (53) yields:

$$\begin{aligned}&\left( P_0 \rho _{s1}^2 +2N_0 \right) \left( P_0 \rho _{s2}^2 +2N_0 \right) \left( P_0 \rho _{s2}^2 +P_t \rho _{2d}^2 \right. \nonumber \\&\quad \left. -\,2P_0 \rho _{2d}^2 +2N_0 \right) \left( 4\rho _{s1}^2 \rho _{s2}^2 P_0^3 \right. \nonumber \\&\quad -\,8\rho _{s1}^2 \rho _{2d}^2 P_0^3 -8\rho _{s2}^2 \rho _{1d}^2 P_0^3 \nonumber \\&\quad +\,16\rho _{1d}^2 \rho _{2d}^2 P_0^3 +12\rho _{s1}^2 N_0 P_0^2 +12\rho _{s2}^2 N_0 P_0^2\nonumber \\&\quad +\,6\rho _{s1}^2 \rho _{2d}^2 P_t P_0^2 +6\rho _{s2}^2 \rho _{1d}^2 P_t P_0^2\nonumber \\&\quad -\,24\rho _{2d}^2 N_0 P_0^2 -24\rho _{1d}^2 N_0 P_0^2 \nonumber \\&\quad -\,24\rho _{1d}^2 \rho _{2d}^2 P_t P_0^2 -2\rho _{s1}^2 N_0 P_t P_0 -2\rho _{s2}^2 N_0 P_t P_0 \nonumber \\&\quad -\,\rho _{s1}^2 \rho _{2d}^2 P_t^2 P_0 -\rho _{s2}^2 \rho _{1d}^2 P_t^2 P_0 +20\rho _{2d}^2 N_0 P_t P_0 \nonumber \\&\quad +\,20\rho _{1d}^2 N_0 P_t P_0 +32N_0^2 P_0 +12\rho _{1d}^2 \rho _{2d}^2 P_t^2 P_0 \nonumber \\&\quad \left. -\,4\rho _{1d}^2 N_0 P_t^2-4\rho _{2d}^2 N_0 P_t^2 -8N_0^2 P_t -2\rho _{1d}^2 \rho _{2d}^2 P_t^3 \right) =0\nonumber \\ \end{aligned}$$
(57)

Considering that \(P_{0},\,\rho _{s1}\), \(\rho _{s2}\), and \(N_{0}\) are positive, the first factor \((P_0 \rho _{s1}^2 +2N_0)\) and the second factor \((P_0 \rho _{s2}^2 +2N_0)\) as well as the third factor \((P_0 \rho _{s2}^2 +P_t \rho _{2d}^2 -2P_0 \rho _{2d}^2 +2N_0)\) are all not equal to zero, otherwise \(P_{1}\) will become zero in terms of Eq. (56). Hence, (57) can be further simplified as (29).

Appendix 3

In this appendix, we will give the derivation of (31) and proof of the Shengjin’s Formula 4.

By means of variable transformation \(x=t-b/(3a)\), the general cubic equation \({ ax}^{3}+{ bx}^{2}+{ cx}+d=0\) can be changed as

$$\begin{aligned} t^{3}+pt+q=0 \end{aligned}$$
(58)

where \(p=({ 3ac-b}^{2})/(3a^{2}),\,q=(2b^{3}-9{ abc}+27a^{2}d)/(27a^{3})\), and \(\Delta \) is given by (30). For \(\Delta <0\), there exist three distinct real roots for cubic equation, so Eq. (58) will have three real roots accordingly. Based on this, we may employ the trigonometric method in [23] to obtain the three roots for Eq. (58). i.e.,

$$\begin{aligned} t_k= & {} 2\sqrt{-p/3}\cos \left( \frac{1}{3}\arccos \left( \frac{3q}{2p}\sqrt{\frac{-3}{p}}\right) -\frac{2\pi k}{3}\right) , \quad k=0,1,2\nonumber \\ \end{aligned}$$
(59)

Substituting \(p=({ 3ac-b}^{2})/(3a^{2})\) and \(q=(2b^{3}-9{ abc}+27a^{2}d)/(27a^{3})\) into (59) gives

$$\begin{aligned} t_k= & {} \frac{2\sqrt{b^{2}-3ac}}{3|a|}\cos \left( \frac{1}{3}\arccos \left( -\frac{2b^{3}-9abc+27a^{2}d}{2(b^{2}-3ac)^{3/2}a}|a|\right) -\frac{2\pi k}{3}\right) \nonumber \\ \end{aligned}$$
(60)

Considering \(T=(2{ Ab}-3{ aB})/(2A^{3/2})\), \(A=b^{2}-3{ ac}\), and \(B={ bc}-9{ ad}\), we have:

$$\begin{aligned} T=\left( 2b^{3}-9abc+27a^{2}d\right) /\left[ 2\left( b^{2}-3ac\right) ^{3/2}\right] \end{aligned}$$
(61)

Substituting (61) and \(A=b^{2}-3{ ac}\) as well as \(x=t-b/(3a)\) into (60) yields final three roots:

$$\begin{aligned} x_k =\left[ -b-2\sqrt{A}\cos \left( \left( \theta -2\pi k\right) /3\right) \right] /(3a), \quad k=0,1,2\nonumber \\ \end{aligned}$$
(62)

where \(\theta =\hbox {arccos}T\). This is the Shengjin’s Formula 4.

With (62), considering the constrain condition of \(P_{0}\), \(P_{0}\) can be expressed as (31).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Wang, Q. & Lin, M. Distributed space-time coding scheme with differential detection and power allocation for cooperative relay network. Telecommun Syst 66, 431–445 (2017). https://doi.org/10.1007/s11235-017-0297-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0297-0

Keywords

Navigation