Skip to main content
Log in

AQM controller design for TCP networks based on a new control strategy

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

When the network suffers from congestion, the core or edge routers signal the incidence of congestion through the active queue management (AQM) to the sources. The time-varying nature of the network dynamics and the complex process of retuning the current AQM algorithms for different operating points necessitate the development of a new AQM algorithm. Since the non-minimum phase characteristics of the network dynamics restrict direct application of the proportional-integral-derivative (PID) controller, we propose a compensated PID controller based on a new control strategy addressing the phase-lag and restrictions caused by the delay. Based on the unstable internal dynamics caused by the non-minimum phase characteristics, a dynamic compensator is designed and a PID controller is then allowed to meet the desired performance objectives by specifying appropriate dynamics for the tracking error. Since the controller gains are obtained directly from the dynamic model, the designed controller does not require to be tuned over the system operating envelop. Moreover, simulation results using ns2 show improvements over previous works especially when the range of variation of delay and model parameters are drastic. Simplicity, low computational cost, self-tuning structure and yet considerable improvement in performance are exclusive features of the proposed AQM for the edge or core routers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Algorithm 1
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. http://www.fukuda-lab.org/mawilab/, accessed at October 2011.

  2. Ariba, Y., Gouaisbaut, F., & Labit, Y. (2009). Feedback control for router management and TCP/IP network stability. IEEE Transactions on Network and Service Management, 6(4), 255–266.

    Article  Google Scholar 

  3. Barzamini, R., Shafiee, M., & Dadlani, A. (2012). Adaptive generalized minimum variance congestion controller for dynamic TCP/AQM networks. Computer Communications, 35(2), 170–178.

    Article  Google Scholar 

  4. Bonald, T., May, M., & Bolot, J. C. (2000). Analytic evaluation of RED performance. In Proceedings of IEEE/INFOCOM (Vol. 3, pp. 1415–1424).

    Google Scholar 

  5. Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G., Partridge, C., Peterson, L., Ramakrishnan, K., Shenker, S., Wroclawski, J., & Zhang, L. (1999). Recommendations on queue management and congestion avoidance in the internet. RFC 2309.

  6. Cao, J., Cleveland, W., Gao, Y., Jeffay, K., Smith, F., & Weigle, M. (2004). Stochastic models for generating synthetic HTTP source traffic. In Proceedings of IEEE/INFOCOM (Vol. 3, pp. 1546–1557).

    Google Scholar 

  7. Chen, J. V., Chen, F. C., Tarn, J. M., & Yen, D. C. (2012). Improving network congestion: a red-based FuzzyPID approach. Computer Standards & Interfaces, 34(5), 426–438.

    Article  Google Scholar 

  8. Chen, Q., & Yang, O. (2004). On designing self-tuning controllers for AQM routers supporting TCP flows based on pole placement. IEEE Journal on Selected Areas in Communications, 22(10), 1965–1974.

    Article  Google Scholar 

  9. Chen, Q., & Yang, O. W. W. (2007). Robust controller design for AQM router. IEEE Transactions on Automatic Control, 52(5), 938–943.

    Article  Google Scholar 

  10. Christiansen, M., Jeffay, K., Ott, D., & Smith, F. (2001). Tuning RED for web traffic. IEEE/ACM Transactions on Networking, 9(3), 249–264.

    Article  Google Scholar 

  11. Ebrahimi, B., Tafreshi, R., Masudi, H., Franchek, M., Mohammadpour, J., & Grigoriadis, K. (2012). A parameter-varying filtered PID strategy for air–fuel ratio control of spark ignition engines. Control Engineering Practice, 20(8), 805–815.

    Article  Google Scholar 

  12. Feng, W., Shin, K., Kandlur, D., & Saha, D. (2002). The BLUE active queue management algorithms. IEEE/ACM Transactions on Networking, 10(4), 513–528.

    Article  Google Scholar 

  13. Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1(4), 397–413.

    Article  Google Scholar 

  14. Grochla, K. (2008). Simulation comparison of active queue management algorithms in TCP/IP networks. Telecommunication Systems, 39(2), 131–136.

    Article  Google Scholar 

  15. Guan, X., Yang, B., Zhao, B., Feng, G., & Chen, C. (2007). Adaptive fuzzy sliding mode active queue management algorithms. Telecommunication Systems, 35(1), 21–42.

    Article  Google Scholar 

  16. Hollot, C., Misra, V., Towsley, D., & Gong, W. B. (2001). A control theoretic analysis of RED. In Proceedings of IEEE/INFOCOM (Vol. 3, pp. 1510–1519).

    Google Scholar 

  17. Hollot, C., Misra, V., Towsley, D., & Gong, W. (2002). Analysis and design of controllers for AQM routers supporting TCP flows. IEEE Transactions on Automatic Control, 47(6), 945–959.

    Article  Google Scholar 

  18. Hong, Y., & Yang, O. (2007). Using interval phase margin assignment to self-tune a PI AQM controller for TCP traffic. Telecommunication Systems, 36(4), 161–171.

    Article  Google Scholar 

  19. Isidori, A. (1997). Nonlinear control systems. New York: Springer.

    Google Scholar 

  20. Kelly, F., Engquist, B., & Schmid, W. (2001). Mathematical modeling of the internet, mathematics unlimited-2001 and beyond.

    Google Scholar 

  21. Kim, K. B. (2006). Design of feedback controls supporting TCP based on the state-space approach. IEEE Transactions on Automatic Control, 51(7), 1086–1099.

    Article  Google Scholar 

  22. Kim, W. J., & Lee, B. G. (1998). FRED: fair random early detection algorithm for TCP over ATM networks. Electronics Letters, 34(2), 152–154.

    Article  Google Scholar 

  23. Kuzmanovic, A. (2005). The power of explicit congestion notification. ACM SIGCOMM Computer Communication Review, 35(4), 61–72.

    Article  Google Scholar 

  24. Liu, Z., Zhang, Y., & Wang, Y. (2011). An interval-based congestion control algorithm under varying network conditions. International Journal of Control, Automation and Systems, 9(1), 98–103. doi:10.1007/s12555-011-0112-8.

    Article  Google Scholar 

  25. Marami, B., & Haeri, M. (2010). Implementation of MPC as an AQM controller. Computer Communications, 33(2), 227–239.

    Article  Google Scholar 

  26. Misra, V., Gong, W. B., & Towsley, D. (2000). Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED. In Proceedings of ACM/SIGCOMM (pp. 151–160). New York: ACM.

    Google Scholar 

  27. Na, Z., Guo, Q., Gao, Z., Zhen, J., & Wang, C. (2012). A novel adaptive traffic prediction AQM algorithm. Telecommunication Systems, 49(1), 149–160. doi:10.1007/s11235-010-9359-2.

    Article  Google Scholar 

  28. Quet, P. F., & Ozbay, H. (2004). On the design of AQM supporting TCP flows using robust control theory. IEEE Transactions on Automatic Control, 49(6), 1031–1036.

    Article  Google Scholar 

  29. Ryu, S., Rump, C., & Qiao, C. (2004). Advances in active queue management (AQM) based TCP congestion control. Telecommunication Systems, 25(3), 317–351.

    Article  Google Scholar 

  30. Sheikhan, M., Shahnazi, R., & Hemmati, E. (2012). Adaptive active queue management controller for TCP communication networks using PSO-RBF models. Neural Computing & Applications. doi:10.1007/s00521-011-0786-0.

    Google Scholar 

  31. Slotine, J., & Li, W. (1991). Applied nonlinear control. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  32. Trinh, T. A., & Molnár, S. (2004). A comprehensive performance analysis of random early detection mechanism. Telecommunication Systems, 25(1), 9–31.

    Article  Google Scholar 

  33. Vaidya, R., & Bhatnagar, S. (2006). Robust optimization of random early detection. Telecommunication Systems, 33(4), 291–316.

    Article  Google Scholar 

  34. Wang, P., Chen, H., Yang, X., & Ma, Y. (2012). Design and analysis of a model predictive controller for active queue management. ISA Transactions, 51(1), 120–131.

    Article  Google Scholar 

  35. Xu, Y. D., Wang, Z. Y., & Wang, H. (2005). ARED: a novel adaptive congestion controller. In Proceedings of machine learning and cybernetics (Vol. 2, pp. 708–714).

    Google Scholar 

  36. Yan, P., Gao, Y., & Ozbay, H. (2005). A variable structure control approach to active queue management for TCP with ECN. IEEE Transactions on Control Systems Technology, 13(2), 203–215.

    Article  Google Scholar 

  37. Yi, S., Deng, X., Kesidis, G., & Das, C. (2008). A dynamic quarantine scheme for controlling unresponsive TCP sessions. Telecommunication Systems, 37(4), 169–189.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Iran Telecommunication Research Center (ITRC)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Kahe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahe, G., Jahangir, A.H. & Ebrahimi, B. AQM controller design for TCP networks based on a new control strategy. Telecommun Syst 57, 295–311 (2014). https://doi.org/10.1007/s11235-013-9859-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9859-y

Keywords

Navigation