Skip to main content
Log in

Coexistence of superconductivity and antiferromagnetism in heavy-fermion intermetallides

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the two-time retarded Green’s function, we study the conditions for realizing the phase of the superconductivity and antiferromagnetism coexistence in the framework of the effective Hamiltonian for the periodic Anderson model. Such a phase was experimentally observed in rare-earth intermetallides with heavy fermions under an external pressure. In the chosen model, the Cooper instability is induced in the presence of long-range antiferromagnetic ordering as a result of the combined effect of a superexchange interaction in the subsystem of localized electrons and the hybridization between two groups of electrons. Applying an external pressure induces an increase in the energy of the localized level accompanied by an abrupt destruction of the long-range antiferromagnetic ordering in a certain region of the phase diagram. The superconductivity order parameter has a maximum value at the destruction point. We show that the decrease in the antiferromagnetic-sublattice magnetization with increasing pressure leads to a significant increase in the masses of Fermi quasiparticles, and the sign of the current carriers reverses at the critical point. The obtained results qualitatively agree well with the experimental data for the heavy-fermion intermetallide CeRhIn 5 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, Science, 235, 1196–1198 (1987).

    Article  ADS  Google Scholar 

  2. N. M. Plakida, High-Temperature Cuprate Superconductors: Experiment, Theory, and Applications (Springer Ser. Solid-State Sci., Vol. 166), Springer, Heidelberg (2010).

    Google Scholar 

  3. N. E. Alekseevskii and D. I. Khomskii, Sov. Phys. Usp., 28, 1136–1143 (1985).

    Article  ADS  Google Scholar 

  4. G. R. Stewart, Rev. Modern Phys., 56, 755–787 (1987).

    Article  ADS  Google Scholar 

  5. D. M. Newns and H. Read, Adv. Phys., 36, 799–849 (1987).

    Article  ADS  Google Scholar 

  6. V. V. Val’kov and S. G. Ovchinnikov, Quasiparticles in Strongly Correlated Systems [in Russian], Izd. SO RAN, Novosibirsk (2001).

    Google Scholar 

  7. K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B, 34, 6554–6556 (1986).

    Article  ADS  Google Scholar 

  8. R. O. Zaitsev, Sov. Phys. Solid State, 29, 2554–2556 (1987).

    Google Scholar 

  9. Yu. A. Izyumov, Sov. Phys. Usp., 34, 935–957 (1991).

    Article  ADS  Google Scholar 

  10. S. V. Vonsovskii and M. S. Svirskii, Sov. JETP, 46, 1619–1631 (1964).

    Google Scholar 

  11. A. I. Buzdin and L. N. Bulaevskii, Sov. Phys. Usp., 29, 412–425 (1986).

    Article  ADS  Google Scholar 

  12. S. M. Hayden, L. Taillefer, C. Vettier, and J. Flouquet, Phys. Rev. B, 46, 8675–8678 (1992).

    Article  ADS  Google Scholar 

  13. R. Caspary, P. Hellmann, M. Keller, G. Sparn, C. Wassiew, R. Köhler, C. Geibel, C. Schank, F. Steglich, and N. E. Phillips, Phys. Rev. Lett., 71, 2146–2149 (1993).

    Article  ADS  Google Scholar 

  14. G. Zwicknagl, A. N. Yaresko, and P. Fulde, Phys. Rev. B, 65, 081103 (2002).

    Article  ADS  Google Scholar 

  15. T. Park and J. D. Thompson, New J. Phys., 11, 055062 (2009); arXiv:0908.2404v1 [cond-mat.str-el] (2009).

    Article  ADS  Google Scholar 

  16. T. Mito, S. Kawasaki, Y. Kawasaki, G.-Q. Zheng, Y. Kitaoka, D. Aoki, Y. Haga, and Y. Ōnuki, Phys. Rev. Lett., 90, 077004 (2003); arXiv:cond-mat/0211576v1 (2002).

    Article  ADS  Google Scholar 

  17. Yu. A. Izyumov, N. M. Plakida, and Yu. N. Skryabin, Sov. Phys. Usp., 32, 1060–1083 (1989).

    Article  ADS  Google Scholar 

  18. H. Mukuda, Y. Yamaguchi, S. Shimizu, Y. Kitaoka, P. Shirage, and A. Iyo, J. Phys. Soc. Japan, 77, 124706 (2008); arXiv:0810.0880v1 [cond-mat.supr-con] (2008).

    Article  ADS  Google Scholar 

  19. S. Shimizu, S. Tabata, H. Mukuda, Y. Kitaoka, P. M. Shirage, H. Kito, and A. Iyo, J. Phys. Soc. Japan, 80, 043706 (2011); arXiv:1102.5282v1 [cond-mat.supr-con] (2011).

    Article  ADS  Google Scholar 

  20. A. N. Lavrov, L. P. Kozeeva, M. R. Trunin, and V. N. Zverev, Phys. Rev. B, 79, 214523 (2009).

    Article  ADS  Google Scholar 

  21. M. B. Maple and O. Fisher, eds., Superconductivity in Ternary Compounds, Springer, Berlin (1982).

    Google Scholar 

  22. P. D. Sacramento, J. Phys., 15, 6285–6300 (2003).

    Google Scholar 

  23. J. V. Alvarez, Phys. Rev. Lett., 98, 126406 (2007).

    Article  ADS  Google Scholar 

  24. C. M. Varma, W. Webber, and L. J. Randall, Phys. Rev. B, 33, 1015–1019 (1986).

    Article  ADS  Google Scholar 

  25. H. Tsunetsugu, M. Sigrist, and K. Ueda, Rev. Modern Phys., 69, 809–863 (1997).

    Article  ADS  Google Scholar 

  26. V. A. Moskalenko, Theor. Math. Phys., 116, 1094–1107 (1998).

    Article  MATH  Google Scholar 

  27. V. A. Moskalenko, Theor. Math. Phys., 110, 243–255 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. V. Val’kov and D. M. Dzebisashvili, Theor. Math. Phys., 157, 1565–1576 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  29. V. V. Val’kov and A. O. Zlotnikov, Bull. Russ. Acad. Sci. Ser. Phys., 75, 639–641 (2011).

    Article  ADS  Google Scholar 

  30. N. N. Bogoliubov, Collection of Scientific Works: Statistical Mechanics [in Russian], Vol. 6, Equilibrium Statistical Mechanics: 1945–1986, Nauka, Moscow (2006).

    Google Scholar 

  31. D. N. Zubarev, Sov. Phys. Usp., 3, 320–345 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  32. N. M. Plakida, Theor. Math. Phys., 5, 1047–1052 (1970).

    Article  Google Scholar 

  33. N. M. Plakida, Theor. Math. Phys., 154, 108–122 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Zwanzig, Phys. Rev., 124, 983–992 (1961).

    Article  ADS  MATH  Google Scholar 

  35. H. Mori, Prog. Theoret. Phys., 33, 423–455 (1965).

    Article  ADS  MATH  Google Scholar 

  36. R. O. Zaitsev, Sov. Phys. JETP, 41, 100–103 (1975).

    ADS  Google Scholar 

  37. R. O. Zaitsev, Sov. Phys. JETP, 43, 574–579 (1976).

    ADS  Google Scholar 

  38. T. Park, E. D. Bauer, and J. D. Thompson, Phys. Rev. Lett., 101, 177002 (2008); arXiv:0806.3308v1 [cond-mat. supr-con] (2008).

    Article  ADS  Google Scholar 

  39. V. V. Val’kov and D. M. Dzebisashvili, Theor. Math. Phys., 162, 106–125 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  40. V. V. Val’kov and D. M. Dzebisashvili, JETP, 110, 301–318 (2010).

    Article  ADS  Google Scholar 

  41. H. Hegger, C. Petrovich, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. Lett., 84, 4986–4989 (2000).

    Article  ADS  Google Scholar 

  42. H. Shishido, R. Settai, H. Harima, and Y. Ōnuki, J. Phys. Soc. Jap., 74, 1103–1106 (2005).

    Article  ADS  Google Scholar 

  43. G. Knebel, D. Aoki, J.-P. Brison, and J. Flouquet, J. Phys. Soc. Jap., 77, 114704 (2008); arXiv:0808.3687v1 [cond-mat.str-el] (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Val’kov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 174, No. 3, pp. 484–503, March, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Val’kov, V.V., Zlotnikov, A.O. Coexistence of superconductivity and antiferromagnetism in heavy-fermion intermetallides. Theor Math Phys 174, 421–437 (2013). https://doi.org/10.1007/s11232-013-0035-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0035-z

Keywords

Navigation