Skip to main content
Log in

The formal de Rham complex

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a formal construction generalizing the classic de Rham complex to a wide class of models in mathematical physics and analysis. The presentation is divided into a sequence of definitions and elementary, easily verified statements; proofs are therefore given only in the key case. Linear operations are everywhere performed over a fixed number field \(\mathbb{F} = \mathbb{R},\mathbb{C}\). All linear spaces, algebras, and modules, although not stipulated explicitly, are by definition or by construction endowed with natural locally convex topologies, and their morphisms are continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. MacLane, Homology (Grundlehren Math. Wiss., Vol. 114), Springer, Berlin (1963).

    Book  MATH  Google Scholar 

  2. V. V. Zharinov, Integral Transforms Spec. Funct., 6, 347–356 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Grad. Stud. Math., Vol. 34), Amer. Math. Soc., Providence, R. I. (2001).

    MATH  Google Scholar 

  4. J. Madore, An Introduction to Noncommutative Differential Geometry and Its Physical Applications (London Math. Soc. Lect. Note Ser., Vol. 206), Cambridge Univ. Press, Cambridge (1995).

    MATH  Google Scholar 

  5. S. Sakai, C?-Algebras and W?-Algebras, Springer, Berlin (1971).

    Book  Google Scholar 

  6. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry: Methods and Applications [in Russian], Vol. 3, Homology Theory, Nauka, Moscow (1984); English transl.: B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov Modern Geometry — Methods and Applications: Part III. Introduction to Homology Theory (Grad. Texts Math., Vol. 124), Springer, New York (1990).

    Google Scholar 

  7. H. Cartan, Differential Calculus: Differential Forms [in Russian], Mir, Moscow (1971).

    Google Scholar 

  8. L. Schwartz, Théorie des distributions (Actualites scientifiques et industrielles, Vols. 1091, 1121), Vols. 1 and 2, Hermann et Cie., Paris (1950, 1951).

    MATH  Google Scholar 

  9. V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  10. I. M. Gel’fand and G. E. Shilov, Generalized Functions and Operations on Them [in Russian], Fizmatlit, Moscow (1959).

    Google Scholar 

  11. R. Bott and L. V. Tu, Differential Forms in Algebraic Topology (Grad. Texts Math., Vol. 82), Springer, New York (1982).

    Book  MATH  Google Scholar 

  12. V. V. Zharinov, Theor. Math. Phys., 170, 263–273 (2012).

    Article  Google Scholar 

  13. V. V. Zharinov, Theor. Math. Phys., 172, 879–884 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zharinov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 174, No. 2, pp. 256–271, February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zharinov, V.V. The formal de Rham complex. Theor Math Phys 174, 220–235 (2013). https://doi.org/10.1007/s11232-013-0019-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0019-z

Keywords

Navigation