Skip to main content
Log in

Geodesic merging

  • S.I. : LORI - V
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

We pursue an account of merging through the use of geodesic semantics, the semantics based on the length of the shortest path on a graph. This approach has been fruitful in other areas of belief change such as revision and update. To this end, we introduce three binary merging operators of propositions defined on the graph of their valuations and we characterize them with a finite set of postulates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baral, C., Kraus, S., & Minker, J. (1991). Combining multiple knowledge bases. IEEE Transactions on Knowledge and Data Engineering, 3, 208–220.

    Article  Google Scholar 

  • Baral, C., Kraus, S., Minker, J., & Subrahmanian, V. S. (1992). Combining knowledge bases consisting of first-order theories. Computational Intelligence, 8(1), 45–71.

    Article  Google Scholar 

  • Bell, J. L. (1986). A new approach to quantum logic. The British Journal for the Philosophy of Science, 37, 83–99.

    Article  Google Scholar 

  • Borgida, A., & Imielinski, T. (1984). Decision making in commitees—a framework for dealing with inconsistency and non-monotonicity. In Proceedings of the 1st Non-Monotonic Reasoning Workshop (pp. 21–32). New Paltz, NY.

  • Delgrande, J. P., & Schaub, T. (2003). A consistency-based approach for belief change. Artificial Intelligence, 151(1–2), 1–41.

    Article  Google Scholar 

  • Ditmarsch, H. V., van der Hoek, W., & Kooi, B. (2007). Dynamic epistemic logic (1st ed.). Berlin: Springer.

    Book  Google Scholar 

  • Elmagarmid, A., Rusinkiewicz, M., & Sheth, A. (Eds.). (1999). Management of heterogeneous and autonomous database systems. San Francisco, CA: Morgan Kaufmann Publishers Inc.

    Google Scholar 

  • Everaere, P., Konieczny, S., & Marquis, P. (2010). Disjunctive merging: Quota and Gmin merging operators. Artificial Intelligence, 174(12–13), 824–849.

    Article  Google Scholar 

  • Georgatos, K. (2003). On indistinguishability and prototypes. Logic Journal of the IGPL, 11(5), 531–545.

    Article  Google Scholar 

  • Georgatos, K. (2008). Belief update using graphs. In Proceedings of the twenty-first international florida artificial intelligence research society conference 2008, pp. 649–654. AAAI Press.

  • Georgatos, K. (2009). Geodesic revision. Journal of Logic and Computation, 19(3), 447–459.

    Article  Google Scholar 

  • Georgatos, K. (2010). Conditioning by minimizing accessibility. In G. Bonanno, B. Löwe, & W. Hoek (Eds.), Logic and the foundations of game and decision theory LOFT 8, Volume 6006 of lecture notes in computer science (pp. 20–33). Berlin: Springer.

    Google Scholar 

  • Georgatos, K. (2013). Iterated contraction based on indistinguishability. In S. N. Artemov & A. Nerode (Eds.), LFCS, volume 7734 of Lecture notes in computer science (pp. 194–205). Berlin: Springer.

    Google Scholar 

  • Hall, D., Chong, C.-Y., Llinas, J., & Liggins, M. (2012). Distributed data fusion for network-centric operations (1st ed.). Boca Raton, FL: CRC Press Inc.

    Book  Google Scholar 

  • Konieczny, S. (2000). On the difference between merging knowledge bases and combining them. In A. G. Cohn, F. Giunchiglia, & B. Selman (Eds.), KR 2000, Principles of knowledge representation and reasoning proceedings of the seventh international conference, Breckenridge, Colorado, USA, April 11-15, 2000, pp. 135–144. Morgan Kaufmann.

  • Konieczny, S., Lang, J., & Marquis, P. (2004). DA2 merging operators. Artificial Intelligence, 157(1–2), 49–79.

    Article  Google Scholar 

  • Konieczny, S., & Pérez, R. P. (1999). Merging with integrity constraints. In A. Hunter & S. Parsons (Eds.), Symbolic and quantitative approaches to reasoning and uncertainty, Volume 1638 of lecture notes in computer science (pp. 233–244). Berlin: Springer.

    Google Scholar 

  • Konieczny, S., & Pérez, R. P. (2002). Merging information under constraints: A logical framework. Journal of Logic and Computation, 12(5), 773–808.

    Article  Google Scholar 

  • Konieczny, S., & Pérez, R. P. (2011). Logic based merging. Journal of Philosophical Logic, 40(2), 239–270.

    Article  Google Scholar 

  • Konieczny, S., & Pérez, R. P. (2013). Confluence operators and their relationships with revision, update and merging. Annals of Mathematics and Artificial Intelligence, 69(1), 73–101.

    Article  Google Scholar 

  • Lehmann, D. J., Magidor, M., & Schlechta, K. (2001). Distance semantics for belief revision. Journal of Symbolic Logic, 66(1), 295–317.

    Article  Google Scholar 

  • Liberatore, P., & Schaerf, M. (1998). Arbitration (or how to merge knowledge bases). IEEE Transactions on Knowledge and Data Engineering, 10(1), 76–90.

    Article  Google Scholar 

  • Lin, J., & Mendelzon, A. O. (1996). Merging databases under constraints. International Journal of Cooperative Information Systems, 7, 55–76.

    Article  Google Scholar 

  • Pigozzi, G. (2006). Belief merging and the discursive dilemma: An argument-based account to paradoxes of judgment aggregation. Synthese, 152(2), 285–298.

    Article  Google Scholar 

  • Poincaré, H. (1905). La Valeur de la Science. Paris: Flammarion.

    Google Scholar 

  • Rabinowicz, W. (1995). Global belief revision based on similarities between worlds. In S. O. Hansson & W. Rabinowicz (Eds.), Logic for a change: Essays dedicated to Sten Lindström on the occasion of his fiftieth birthday, number 9 in Uppsala Prints and Preprints in Philosophy, pages 80–105. Department of Philosophy, Uppsala University.

  • Revesz, P. Z. (1993). On the semantics of theory change: Arbitration between old and new information. In In proceedings of the twelfth ACM SIGACT-SIGMOD-SIGART symposium on principles of databases, pp. 71–82.

  • Schlechta, K. (1997). Non-prioritized belief revision based on distances between models. Theoria, 63(1–2), 34–53.

    Google Scholar 

  • Smets, P. (1990). The combination of evidence in the transferable belief model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 447–458.

    Article  Google Scholar 

  • Zeeman, E. C. (1962). The topology of the brain and visual perception. In M. K. Fort (Ed.), The topology of 3-manifolds (pp. 240–256). Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Georgatos.

Additional information

I am grateful to the reviewers for their comments and suggestions that greatly improved both the readability and substance of this paper. Support for this project was provided by a PSC-CUNY Award, jointly funded by The Professional Staff Congress and The City University of New York.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgatos, K. Geodesic merging. Synthese 195, 4243–4264 (2018). https://doi.org/10.1007/s11229-017-1432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-017-1432-x

Keywords

Navigation