Skip to main content
Log in

On the axiomatizability of some first-order spatio-temporal theories

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Spatio-temporal logic is a variant of branching temporal logic where one of the so-called causal relations on spacetime plays the role of a time flow. Allowing only rational numbers as space and time co-ordinates, we prove that a first-order spatio-temporal theory over this flow is recursively enumerable if and only if the dimension of spacetime does not exceed 2. The situation is somewhat different compared to the case of real co-ordinates, because we establish that even dimension 2 does not permit recursive enumerability in this case. The proof of the result on rational spacetime involves a more deeper portion of spacetime geometry than the corresponding, more evident result for the real co-ordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Formal methods specification and analysis guidebook for the verification of software and computer systems. http://eisl.jpl.nasa.gov/quality/Formal_Methods.

References

  • Andréka, H., Goranko, V., Mikulás, Sz, Németi, I., & Sain, I. (1995). Effective temporal logics of programs. In L. Bolc & A. Szalas (Eds.), Time and logic. London: UCL Press.

    Google Scholar 

  • Andréka, H., Madarász, J. X., & Németi, I. (2000). On the logical structure of relativity theories, internet book. http://www.renyi.hu/pub/algebraic-logic/olsort.html. Accessed 30 April 2013.

  • Andréka, H., Madarász, J. X., & Németi, I. (2004). Logical analysis of relativity theories. In V. Hendricks et al. (Eds.), First-order logic revisited. Berlin: Logos Verlag.

  • Andréka, H., Németi, I., & Sain, I. (1991). On the strength of temporal proofs. Theoretical Computer Science, 80, 125–151.

    Article  Google Scholar 

  • Ax, J. P. (1978). The elementary foundations of spacetime. Foundations of Physics, 8(7–8), 507–546.

    Article  Google Scholar 

  • Bacchus, F., & Kabanza, F. (2000). Using temporal logic to express search and control knowledge for planning. Artificial Intelligence, 116(1–2), 123–191.

    Article  Google Scholar 

  • Balbiani, P., & Condotta, J.-F. (2002). Computational complexity of propositional linear temporal logics based on qualitative spatial or temporal reasoning. In A. Armando (Ed.), Proceedings of frontiers of combining systems (ProCoS 2002). Vol. 2309 of LNCS.

    Chapter  Google Scholar 

  • Balbiani, P., & Goranko, V. (2002). Modal logics of parallelism, orthogonality and affine geometries. Journal of Applied Non-Classical Logics, 12(3–4), 365–398.

    Article  Google Scholar 

  • Bennett, B., & Cohn, A. (1999). Multi-dimensional modal logic as a framework for spatio-temporal reasoning. In Proceedings of the hot topics in spatio-temporal reasoning, workshop, IJCAI’99, Stockholm.

  • Charron-Bost, B., & Mattern, F. (1996). Synchronous, asynchronous and causally ordered communication. Distributed Computing, 9, 173–191.

    Article  Google Scholar 

  • Clarke, E., Browne, M., Emerson, E., & Sistla, A. (1985). Using temporal logic for formal verification of finite state systems. In Logics and models of concurrent systems, 1985, NATO ASI series (Vol. F13).

    Chapter  Google Scholar 

  • Clarke, E., Emerson, E., & Sistla, A. (1986). Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Toplas, 8, 244–263.

    Article  Google Scholar 

  • Gabbay, D., Hodkinson, I., & Reynolds, M. (1994). Temporal logic. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Gerevini, A., & Nevel, B. (2002). Qualitative spatio-temporal reasoning with RCC-8 and Allen’s interval calculus: Computational complexity. In Proceedings of the 15th European conference on artificial intelligence (ECAI’02) (pp. 312–316). Amsterdam: IOS Press.

  • Goldblatt, R. (1980). Diodorean modality in Minkowski space. Studia Logica, 39, 219–236.

    Article  Google Scholar 

  • Goldblatt, R. (1987). Orthogonality and spacetime geometry. New York: Springer.

    Book  Google Scholar 

  • Goldblatt, R. (1989). First-order spacetime geometry. In Logic, methodology and philosophy of science, VIII (Moscow, 1987) (pp. 303–316). Studies in logic and the foundations of mathematics 126. Amsterdam: North-Holland.

    Google Scholar 

  • Hodkinson, I., Wolter, F., & Zakaryashev, M. (2000). On decidable fragments of first-order temporal logics. Annals of Pure and Applied Logic, 106, 85–134.

    Article  Google Scholar 

  • Hughes, G. E., & Creswell, M. (1968). An introduction to modal logic. London: Methuen.

    Google Scholar 

  • Madarász, J. X., Németi, I., & Székely, G. (2006). Twin paradox and the logical foundation of relativity theory. Foundations of Physics, 36(5), 681–714.

    Article  Google Scholar 

  • Manna, Z., & Pnueli, A. (1981). Verification of concurrent programs—The temporal framework. In R. S. Boyer & J. S. Moore (Eds.), The correctness problem in computer science (pp. 215–273). International lecture series in computer science. New York: Academic Press.

  • Manna, Z., & Pnueli, A. (1992). The temporal logic of reactive and concurrent systems. New York: Springer.

    Book  Google Scholar 

  • Marx, M., & Venema, Y. (1997). Multi-dimensional modal logic. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Mattern, F., & Mattern, F. (1992). On the relativistic structure of logical time in distributed systems. In Informatik (pp. 309–331). Stuttgart: Teubner Texte zur Informatik.

  • Merz, S. (1992). Decidability and incompleteness results for first-order temporal logics of linear time. Journal of Applied Non-Classical Logics, 2(2), 139–156.

    Article  Google Scholar 

  • Mundy, B. (1986a). The physical content of Minkowski geometry. British Journal for the Philosophy of Science, 37(1), 25–54.

    Article  Google Scholar 

  • Mundy, B. (1986b). Optical axiomatization of Minkowski space–time geometry. Philosophy of Science, 53(1), 1–30.

    Article  Google Scholar 

  • Pambuccian, V. (2007). Alexandrov–Zeeman type theorems expressed in terms of definability. Aequationes Mathematicae, 74(3), 249–261.

    Article  Google Scholar 

  • Phillips, J. (1998). A note on the modal and temporal logics of n-dimensional spacetime. Notre Dame Journal of Formal Logic, 39(4), 545–553.

    Article  Google Scholar 

  • Phillips, J. F. (2001). Modal logic of succession for 2-dimensional integral spacetime. Journal of Philosophical Logic, 30, 1–25.

    Article  Google Scholar 

  • Reif, J., & Sistla, A. (1985). A multiprocess network logic with temporal and spatial modalities. Journal of Computer and System Sciences, 30, 41–53.

    Article  Google Scholar 

  • Reynolds, M. (1996). Axiomatising first-order temporal logic: Until and since over linear time. Studia Logica, 57, 279–302.

    Article  Google Scholar 

  • Reynolds, M. (1997). A decidable temporal logic of parallelism. Notre Dame Journal of Formal Logic, 38(3), 419–436.

    Article  Google Scholar 

  • Reynolds, M., & Zakaryashev, M. (2001). On the products of linear modal logics. Journal of Logic and Computation, 11, 909–931.

    Article  Google Scholar 

  • Robb, A. A. (1914). A theory of time and space. Cambridge: Cambridge University Press.

    Google Scholar 

  • Segerberg, K. (1973). Two-dimensional modal logic. Journal of Philosophical Logic, 2, 77–96.

    Article  Google Scholar 

  • Shapirovsky, I., & Shehtman, V. (2002). Chronological future modality in Minkowski spacetime. Advances in Modal Logic, 4, 437–459.

    Google Scholar 

  • Shehtman, V. (1978). Two-dimensional modal logics. Mathematical Notices of the USSR Academy of Sciences, 23, 417–424.

    Google Scholar 

  • Shehtman, V. (1983). Modal logics of domains on the real plane. Studia Logica, 42(1), 63–80.

    Article  Google Scholar 

  • Vályi, S. (2006). A note on the axiomatizability of some first-order spatio-temporal logics. Technical report.

  • Vályi, S. (2009). Non-classical logic—Axiomatizability of spatio-temporal theories and interval-valued computations. PhD dissertation.

  • van Benthem, J. (1983). The logic of time. Synthese library 156. Dordrecht: Reidel.

  • Wolter, F., & Zakaryashev, M. (2000). Spatio-temporal representation and reasoning based on RCC-8. In A. Cohn et al. (Eds.), Proceedings of the 7th conference on principles of knowledge representation and reasoning KR2000 (pp. 3–14). Breckenridge: Morgan Kaufmann.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Vályi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vályi, S. On the axiomatizability of some first-order spatio-temporal theories. Synthese 192, 2293–2309 (2015). https://doi.org/10.1007/s11229-013-0365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-013-0365-2

Keywords

Navigation