Skip to main content
Log in

Decoherence and the Copenhagen cut

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

While it is widely agreed that decoherence will not solve the measurement problem, decoherence has been used to explain the “emergence of classicality” and to eliminate the need for a Copenhagen edict that some systems simply have to be treated as classical via a quantum-classical “cut”. I argue that decoherence still relies on such a cut. Decoherence accounts derive classicality only in virtue of their incompleteness, by omission of part of the entangled system of which the classical-appearing subsystem is a part. I argue that this omission is only justified by implicit classical assumptions that objectify a subsystem and are employed via either a traditional Copenhagen cut or a functionally equivalent imposition of separability on a system in a non-separable state. I argue that decoherence cannot derive classicality without assuming it in some other form, and I provide an analysis of when it is appropriate to make these otherwise implicit classical assumptions by adopting a minimalistic Copenhagen-style approach to measurement. Finally, I argue that, ironically, the conditions for making these assumptions may be better satisfied in standard measurement situations than in cases of environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacciagaluppi, G. (2007). The role of decoherence in quantum mechanics. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2008 Edition) http://plato.stanford.edu/archives/fall2008/entries/qm-decoherence/).

  • Blanchard P., Giulini D. et al (1999) Decoherence: Theoretical, experimental, and conceptual problems. Springer, New York

    Google Scholar 

  • Bohm D. (1951) Quantum theory. Prentice-Hall, New York

    Google Scholar 

  • Bohr N. (1928) The quantum postulate and the recent development of atomic theory. Nature 121(supplement): 580–590

    Article  Google Scholar 

  • Bohr, N. (1963). The genesis of quantum mechanics. In Essays 1958–1962 (pp. 74–78). New York: Wiley.

  • Bokulich A. (2004) Open or closed? Dirac, Heisenberg, and the relation between classical and quantum mechanics. Studies in History and Philosophy of Modern Physics 35: 377–396

    Article  Google Scholar 

  • Bub J. (1997) Interpreting the quantum world. Cambridge University Press, Cambridge

    Google Scholar 

  • Camilleri K. (2009) A history of entanglement: Decoherence and the interpretation problem. Studies in History and Philosophy of Modern Physics 40: 290–302

    Article  Google Scholar 

  • Damski, B., Quan, H. T., et al. (2009). Critical dynamics of decoherence. arXiv:0911.5729v1.

  • d’Espagnat B. (1971) Conceptual foundations of quantum mechanics. Addison Wesley, New York

    Google Scholar 

  • Dickson M. (2007) Non-relativistic quantum mechanics. In: Butterfield J., Earman J., Gabbay D., Thagard P. R., Woods J. (Eds.), Philosophy of physics (Handbook for the philosophy of science). North Holland, Amsterdam, pp 275–416

    Chapter  Google Scholar 

  • Dickson, M., & Dieks, D. (2007). Modal interpretations of quantum mechanics. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. (Spring 2009 Edition) http://plato.stanford.edu/archives/spr2009/entries/qm-modal/).

  • Dopfer, B. (1998). Zwei Experimente zur Interferenz von Zwei-Photonen Zustanden Ein Heisenbergmikroskop und Pendellosung. Dissertation, Institut fur Experimentalphysik, Innsbruck.

  • Englert B.-G., Schwinder J. et al (1988) Is spin coherence like humpty-dumpty?. I. Simplified treatment. Foundations of Physics 18: 1045–1056

    Article  Google Scholar 

  • Guilini D. et al (1996) Decoherence and the appearance of a classical world in quantum theory. Springer, Berlin

    Book  Google Scholar 

  • Horodecki M., Horodecki R. (1998) Are there basic laws of quantum information processing?. Physics Letters A 244: 473–481

    Article  Google Scholar 

  • Howard D. (1994) What makes a classical concept classical?. In: Faye J., Folse H. J. (Eds.), Niels Bohr and contemporary philosophy. Kluwer Academic, Dordrecht, pp 210–230

    Google Scholar 

  • Jacques V., Wu E. et al (2005) Single-photon wavefront-splitting interference: An illustration of the light quantum in action. European Physical Journal D 35: 561–565

    Article  Google Scholar 

  • Jacques V., Wu E. et al (2007) Experimental realization of Wheeler’s delayed-choice gedanken Experiment. Science 315: 966–968

    Article  Google Scholar 

  • Joos E. (1999) Elements of environmental decoherence. In: Blanchard P., Giulini D., Joos E., Kiefer C., Stamatescu I.-O. (Eds.), Decoherence: Theoretical, experimental, and conceptual problems. Springer, New York, pp 1–17

    Google Scholar 

  • Joos E. (2003) Decoherence through interaction with the environment. In: Joos E., Zeh H. D., Kiefer C. (Eds.), Decoherence and the appearance of a classical world in quantum theory. Springer, Berlin, pp 35–136

    Chapter  Google Scholar 

  • Joos, E. (2007). Decoherence: An introduction. Physics and Philosophy. Retrieved Jan 2, 2010 from http://hdl.handle.net/2003/24483..

  • Kim Y.-H., Yu R. et al (2000) Delayed choice quantum eraser. Physical Review Letters 84: 1–5

    Article  Google Scholar 

  • Kwiat P., Englert B.-G. (2004) Quantum-erasing the nature of reality, or perhaps, the reality of nature?. In: Barrow J. D., Davies P. C. W., Harper C. L. (Eds.), Science and ultimate reality: Quantum theory, cosmology, and complexity. Cambridge University Press, Cambridge, pp 306–328

    Chapter  Google Scholar 

  • Landsman N. P. (2007) Between classical and quantum. In: Butterfield J., Earman J., Gabbay D., Thagard P. R., Woods J. (Eds.), Philosophy of physics (Handbook for the philosophy of science). North Holland, Amsterdam, pp 417–554

    Chapter  Google Scholar 

  • Liu C. (1998) Decoherence and idealization in quantum measurement idealization IX: Idealization. In: Shanks N. E. (Ed.), Contemporary physics. Rodopi, Amsterdam, pp 75–98

    Google Scholar 

  • MacKinnon E. M. (2008) The new reductionism. The Philosophical Forum 39: 439–461

    Article  Google Scholar 

  • Pessoa O. Jr. (1997) Can the decoherence approach help to solve the measurement problem?. Synthese 113: 323–346

    Article  Google Scholar 

  • Scarcelli G., Zhou Y. et al (2007) Random delayed-choice quantum eraser via two-photon imaging. European Physical Journal D 44: 167–173

    Article  Google Scholar 

  • Schlosshauer M. (2004) Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics 76: 1267–1305

    Article  Google Scholar 

  • Schlosshauer M. (2007) Decoherence and the quantum-to-classical transition. Springer, Berlin

    Google Scholar 

  • Schwinger J., Scully M. O. et al (1998) Is spin coherence like Humpty-Dumpty? II. General theory. Zeitschrift für Physik D 10: 135–144

    Google Scholar 

  • Scully M. O., Drühl K. (1982) Quantum eraser: A proposed photon correlation experiment concerning observation and delayed choice in quantum mechanics. Physical Review A 25: 2208–2213

    Article  Google Scholar 

  • Scully M. O., Englert B.-G. et al (1991) Quantum optical tests of complementarity. Nature 351: 111–116

    Article  Google Scholar 

  • Scully M. O., Walther H. (1998) An operational analysis of quantum eraser and delayed choice. Foundations of Physics 28: 399–413

    Article  Google Scholar 

  • Stamp P. C. E. (2006) The decoherence puzzle. Studies in History and Philosophy of Modern Physics 37: 467–497

    Article  Google Scholar 

  • Tanona S. (2004a) Idealization and formalism in Bohr’s approach to quantum theory. Philosophy of Science 71: 683–695

    Article  Google Scholar 

  • Tanona S. (2004b) Uncertainty in Bohr’s response to the Heisenberg microscope. Studies in History and Philosophy of Modern Physics 35: 483–507

    Article  Google Scholar 

  • Tanona, S. (2010). Theory, coordination, and empirical meaning in modern physics. In M. Domski & M. Dickson (Eds.), Discourse on a New Method. Open Court.

  • Ulfbeck O., Bohr A. (2001) Genuine fortuitousness. Where did that click come from?. Foundations of Physics 31: 757–774

    Article  Google Scholar 

  • Wickes, W. C., Alley, C. O., et al. (1983). A ‘delayed-choice’ quantum mechanics experiment. In J. A. Wheeler and W. H. Zurek (Eds.), Quantum theory and measurement (pp. 457–461). Princeton: Princeton University Press.

  • Zanardi P., Lidar D. A. et al (2004) Quantum tensor product structures are observable induced. Physical Review Letters 92: 060402

    Article  Google Scholar 

  • Zeh H. D. (2006) Roots and fruits of decoherence. Séminaire Poincaré 1: 115–125

    Google Scholar 

  • Zeh, H. D. (2009). How decoherence can solve the measurement problem. Retrieved Jan 2, 2010 from http://www.rzuser.uni-heidelberg.de/~as3/SolveMeas.html.

  • Zeilinger A. (1999) Experiment and the foundations of quantum physics. Reviews of Modern Physics 71: S288–S297

    Article  Google Scholar 

  • Zurek W. H. (1981) Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?. Physical Review D 24: 1516–1525

    Article  Google Scholar 

  • Zurek W. H. (1993) Preferred states, predictability, classicality, and the environment-induced decoherence. Progress in Theoretical Physics 89: 281–312

    Article  Google Scholar 

  • Zurek W. H. (1998) Decoherence, einselection, and the existential interpretation (the rough guide). Philosophical Transactions A A356: 1793–1820

    Google Scholar 

  • Zurek W. H. (2002) Decoherence and the transition from quantum to classical—revisited. Los Alamos Science 27: 2–25

    Google Scholar 

  • Zurek W. H. (2005) Probabilities from entanglement, Born’s rule from envariance. Physical Review A 71: 052105

    Article  Google Scholar 

  • Zurek W. H. (2009) Quantum Darwinism. Nature Physics 5: 181–188

    Article  Google Scholar 

  • Zwolak M., Quan H.T. et al (2009) Quantum Darwinism in a mixed environment. Physical Review Letters 103: 110402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Tanona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanona, S. Decoherence and the Copenhagen cut. Synthese 190, 3625–3649 (2013). https://doi.org/10.1007/s11229-012-0216-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-012-0216-6

Keywords

Navigation