Skip to main content
Log in

Speakable in quantum mechanics

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

At the 1927 Como conference Bohr spoke the famous words “It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we can say about nature.” However, if the Copenhagen interpretation really adheres to this motto, why then is there this nagging feeling of conflict when comparing it with realist interpretations? Surely what one can say about nature should in a certain sense be interpretation independent. In this paper I take Bohr’s motto seriously and develop a quantum logic that avoids assuming any form of realism as much as possible. To illustrate the non-triviality of this motto, a similar result is first derived for classical mechanics. It turns out that the logic for classical mechanics is a special case of the quantum logic thus derived. Some hints are provided as to how these logics are to be used in practical situations and finally, I discuss how some realist interpretations relate to these logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baltag A., Smets S. (2011) Quantum logic as a dynamic logic. Synthese 179: 285–306

    Article  Google Scholar 

  • Bell, J. S. 1964. On the Einstein Podolsky Rosen paradox. Physics1(3), 195–200. Reprinted in Bell J. S. (1987). Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bell, J. S. (1982). On the impossible pilot wave. Foundations of Physics 12, 989–999. Reprinted in Bell J. S. (1987). Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press.

  • Bell J. S. (1990) Against measurement. Physics World 3: 33–40

    Google Scholar 

  • Birkhoff, G., von Neumann J. (1936). The logic of quantum mechanics. Annals of Mathematics 37(4), 823–843. (Reprinted in Hooker, C. A. (1975). The logico-algebraic approach to quantum mechanics, Vol. I, Boston: D. Reidel.)

  • Bohm D. (1952) A suggested interpretation of the quantum theory in terms of “Hidden” variables I & II. Physical Review 85(2): 166–193

    Article  Google Scholar 

  • Caspers M., Heunen C., Landsman N. P., Spitters B. (2009) Intuitionistic quantum logic of an n-level system. Foundations of Physics 39: 731–759

    Article  Google Scholar 

  • Clauser J. F., Horne M. A., Shimony A., Holt R. A. (1969) Proposed experiment to test local hidden-variable theories. Physical Review Letters 23(15): 880–884

    Article  Google Scholar 

  • Clifton R., Kent A. (2001) Simulating quantum mechanics by non-contextual hidden variables. Proceedings: Mathematical, Physical and Engineering Sciences 456(2001): 2101–2114

    Article  Google Scholar 

  • Corbett J. V., Durt T. (2009) Collimation processes in quantum mechanics interpreted in quantum real numbers. Studies in History and Philosophy of Modern Physics 40(1): 68–83

    Article  Google Scholar 

  • Döring A., Isham C. (2011) “What is a thing?”: Topos theory in the foundations of physics. In: Coecke B. (ed.) New structures for physics, Vol. 813 of Lecture Notes in Physics. Springer, Berlin, pp 753–937

    Google Scholar 

  • Dummett M. (1976) Is logic empirical?. In: Lewis H. D. (ed.) Contemporary british philosophy, Vol. IV. George Allen and Unwin, London, pp 45–68

    Google Scholar 

  • Feynman R. P., Leighton R. B., Sands M. (1963) The Feynman lectures on physics, Vol. 1. Addison-Wesley, Reading

    Google Scholar 

  • Folse H. J. (1981) Complementarity, Bell’s theorem, and the framework of process metaphysics. Process Studies 11(4): 259–273

    Article  Google Scholar 

  • Griffiths R. B. (2011) EPR, Bell, and quantum locality. American Journal of Physics 79(9): 954–965

    Article  Google Scholar 

  • Hermens R. (2011) The problem of contextuality and the impossibility of experimental metaphysics thereof. Studies in History and Philosophy of Modern Physics 42(4): 214–225

    Article  Google Scholar 

  • Heunen, C., Landsman, N. P., Spitters, B. (2011). Bohrification of operator algebras and quantum logic Synthese pp. 1–34. doi:10.1007/s11229-011-9918-4.

  • Isham C. J. (1995) Lectures on quantum theory. Imperial College Press, London

    Google Scholar 

  • Kent A. (1999) Noncontextual hidden variables and physical measurements. Physical Review Letters 83(19): 3755–3757

    Article  Google Scholar 

  • Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics 17, 59–67. (Reprinted in Hooker, C. A. (1975). The logico-algebraic approach to quantum mechanics, Vol. I, Boston: D. Reidel.)

  • Maudlin T. (2005) The tale of quantum logic. In: Ben-Menahem Y. (ed.) Hilary Putnam (Contemporary philosophy in focus). Cambridge University Press, Cambridge, pp 156–187

    Chapter  Google Scholar 

  • Meyer D. A. (1999) Finitie precision measurement nullifies the Kochen–Specker theorem. Physical Review Letters 83(19): 3751–3754

    Article  Google Scholar 

  • Peres A. (1978) Unperformed experiments have no results. American Journal of Physics 46(7): 745–747

    Article  Google Scholar 

  • Peres A. (1984) The classic paradoxes of quantum theory. Foundations of Physics 14(11): 1131–1145

    Article  Google Scholar 

  • Peres A. (2002) Quantum theory: Concepts and methods. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Popper K. R. (1968) Birkhoff and von Neumann’s interpretation of quantum mechanics. Nature 219: 682–685

    Article  Google Scholar 

  • Putnam, H. (1969). Is logic empirical?. Boston studies in the philosophy of science V. (Reprinted in Hooker, C. A. (1975). The logico-algebraic approach to quantum mechanics, Vol. II, Boston: D. Reidel.)

  • Stairs A. (1983) Quantum logic, realism, and value definiteness. Philosophy of Science 50: 578–602

    Article  Google Scholar 

  • von Neumann, J. (1955) Mathematical foundations of quantum mechanics (R. T. Beyer, Trans). Princeton: Princeton University Press. (Original title: Mathematische Grundlagen der Quantenmechanik, Berlin 1932).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronnie Hermens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermens, R. Speakable in quantum mechanics. Synthese 190, 3265–3286 (2013). https://doi.org/10.1007/s11229-012-0158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-012-0158-z

Keywords

Navigation