Skip to main content
Log in

Picturing classical and quantum Bayesian inference

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

We introduce a graphical framework for Bayesian inference that is sufficiently general to accommodate not just the standard case but also recent proposals for a theory of quantum Bayesian inference wherein one considers density operators rather than probability distributions as representative of degrees of belief. The diagrammatic framework is stated in the graphical language of symmetric monoidal categories and of compact structures and Frobenius structures therein, in which Bayesian inversion boils down to transposition with respect to an appropriate compact structure. We characterize classical Bayesian inference in terms of a graphical property and demonstrate that our approach eliminates some purely conventional elements that appear in common representations thereof, such as whether degrees of belief are represented by probabilities or entropic quantities. We also introduce a quantum-like calculus wherein the Frobenius structure is noncommutative and show that it can accommodate Leifer’s calculus of ‘conditional density operators’. The notion of conditional independence is also generalized to our graphical setting and we make some preliminary connections to the theory of Bayesian networks. Finally, we demonstrate how to construct a graphical Bayesian calculus within any dagger compact category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramsky, S., & Coecke, B. (2004). A categorical semantics of quantum protocols. In Proceedings of 19th IEEE conference on logic in computer science (pp. 415–425). IEEE Press. arXiv:quant-ph/0402130.

  • Baez, J. C. (2006). Quantum quandaries: A category-theoretic perspective. In D. Rickles, S. French, & J. T. Saatsi (Eds.), The structural foundations of quantum gravity (pp. 240–266). Oxford: Oxford University Press. arXiv:quant-ph/0404040.

  • Baez J.C., Dolan J. (1995) Higher-dimensional algebra and topological quantum field theory. Journal of Mathematical Physics 36: 6073–6105 arXiv:q-alg/9503002

    Article  Google Scholar 

  • Barnum H., Knill E. (2002) Reversing quantum dynamics with near-optimal quantum and classical fidelity. Journal of Mathematical Physics 43: 2097–2106

    Article  Google Scholar 

  • Barnum, H., & Wilce, A. (2009). Ordered linear spaces and categories as frameworks for information-processing characterizations of quantum and classical theory. arXiv:0908.2354.

  • Barnum, H., Barrett, J., Leifer, M., & Wilce, A. (2006). Cloning and broadcasting in generic probabilistic theories. arXiv:quant-ph/0611295.

  • Barnum H., Caves C.M., Fuchs C.A., Jozsa R., Schumacher B. (1996) Noncommuting mixed states cannot be broadcast. Physical Review Letters 76: 2818–2821 arXiv:quant-ph/9511010

    Article  Google Scholar 

  • Barrett J. (2007) Information processing in general probabilistic theories. Physical Review A 75: 032304 arXiv:quant-ph/0508211

    Article  Google Scholar 

  • Carboni A., Walters R. F. C. (1987) Cartesian bicategories I. Journal of Pure and Applied Algebra 49: 11–32

    Article  Google Scholar 

  • Coecke B. (2010) Quantum picturalism. Contemporary Physics 51: 59–83 arXiv:0908.1787

    Article  Google Scholar 

  • Coecke B., Paquette E.O. (2006) POVMs and Naimark’s theorem without sums. Electronic Notes in Theoretical Computer Science 210: 131–152 arXiv:quant-ph/0608072

    Google Scholar 

  • Coecke, B., & Paquette, E. O. (2011). Categories for the practising physicist. In B. Coecke (Ed.), New structures for physics. Lecture notes in physics (pp. 173–286). New York: Springer-Verlag. arXiv:0905.3010.

  • Coecke B., & Pavlovic D. (2007). Quantum measurements without sums. In G. Chen, L. Kauffman, & S. Lamonaco (Eds.), Mathematics of quantum computing and technology (pp. 567–604). Abington: Taylor and Francis. arXiv:quant-ph/0608035.

  • Coecke, B., Paquette, E. O., & Pavlovic, D. (2009). Classical and quantum structuralism. In I. Mackie & S. Gay (Eds.), Semantic techniques for quantum computation (pp. 29–69). Cambridge: Cambridge University Press. arXiv:0904.1997 (to appear).

  • Coecke B., Paquette E.O., Perdrix S. (2008) Bases in diagrammatic quantum protocols. Electronic Notes in Theoretical Computer Science 218: 131–152 arXiv:0808.1037

    Article  Google Scholar 

  • Coecke, B., Pavlovic, D., Vicary J. (2008b). A new description of orthogonal bases. Mathematical Structures in Computer Science. To appear. arXiv:0810.0812.

  • Cox R. T. (1946) Probability, frequency, and reasonable expectation. American Journal of Physics 14: 1–13

    Article  Google Scholar 

  • Dixon L., Duncan R. (2009) Graphical reasoning in compact closed categories for quantum computation. Annals of Mathematics and Artificial Intelligence 56: 23–42

    Article  Google Scholar 

  • Dixon, L., Duncan, R., Kissinger, A., & Merry, A. (2010). quantomatic software tool. http://dream.inf.ed.ac.uk/projects/quantomatic/.

  • Fuchs, C. A., & Schack, R. (2009). Quantum-Bayesian coherence. arXiv:0906.2187v1.

  • Hasegawa, M., Hofmann, M., & Plotkin, G. (2008). Finite dimensional vector spaces are complete for traced symmetric monoidal categories. Lecture notes in computer science Vol. 4800 (pp. 367–385). Heidelberg: Springer-Verlag.

  • Hayden P., Jozsa R., Petz D., Winter A. (2004) Structure of states which satisfy strong subadditivity of quantum entropy with equality. Communications in Mathematical Physics 246: 359–374

    Article  Google Scholar 

  • Joyal A., Street R. (1991) The geometry of tensor calculus I. Advances in Mathematics 88: 55–112

    Article  Google Scholar 

  • Kelly, G. M. (1972). Many-variable functorial calculus. In G. M. Kelly, M. L. Laplaza, G. Lewis, & S. Mac Lane (Eds.), Coherence in categories. Lecture notes in mathematics Vol. 281 (pp. 66–105). Berlin: Springer-Verlag.

  • Kelly G. M., Laplaza M. L. (1980) Coherence for compact closed categories. Journal of Pure and Applied Algebra 19: 193–213

    Article  Google Scholar 

  • Kock J. (2003) Frobenius algebras and 2D topological quantum field theories. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lack S. (2004) Composing PROPs. Theory and Applications of Categories 13: 147–163

    Google Scholar 

  • Lauda A.D. (2006) Frobenius algebras and ambidextrous adjunctions. Theory and Applications of Categories 16: 84–122 arXiv:math.CT/0502550

    Google Scholar 

  • Leifer M.S. (2006) Quantum dynamics as an analog of conditional probability. Physical Review A 74: 042310 arXiv:quant-ph/0606022

    Article  Google Scholar 

  • Leifer M.S., Poulin D. (2008) Quantum graphical models and belief propagation. Annals of Physics 323: 1899–1946 arXiv:0708.1337

    Article  Google Scholar 

  • Leifer, M. S., & Spekkens, R. W. (2008). Quantum analogues of Bayes’ theorem, sufficient statistics and the pooling problem (in preparation, 2009).

  • Melliés, P.-A. (2009). Categorical semantics of linear logic. http://www.pps.jussieu.fr/~mellies/papers/panorama.pdf.

  • Pearl J. (1988) Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Pearl J. (2000) Causality: Models, reasoning and inference. Cambridge University Press, Cambridge

    Google Scholar 

  • Penrose R. (1971) Applications of negative dimensional tensors. In: Welsh D. (eds) Combinatorial mathematics and its applications. Academic Press, New York, pp 221–244

    Google Scholar 

  • Selinger P. (2007) Dagger compact categories and completely positive maps. Electronic Notes in Theoretical Computer Science 170: 139–163

    Article  Google Scholar 

  • Selinger P. (2010) Finite dimensional Hilbert spaces are complete for dagger compact closed categories. Electronic Notes in Theoretical Computer Science 270: 113–119

    Article  Google Scholar 

  • Selinger P. (2011) A survey of graphical languages for monoidal categories. In: Coecke B. (eds) New structures for physics. Lecture notes in physics. Springer-Verlag, Heidelberg, pp 275–337 arXiv:0908.3347

    Google Scholar 

  • Street R. (2007) Quantum groups: A path to current Algebra. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Turaev V. (1994) Quantum invariants of knots and 3-manifolds. de Gruyter, Berlin

    Google Scholar 

  • Uhlmann A. (1977) Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Communications in Mathematical Physics 54: 21–32

    Article  Google Scholar 

  • Vicary J. (2008) Categorical formulation of finite-dimensional C*-algebras. Electronic Notes in Theoretical Computer Science 270: 129–145 Extended version: arXiv:0805.0432

    Article  Google Scholar 

  • Yetter D.N. (2001) Functorial Knot theory. Categories of tangles, coherence, categorical deformations, and topological invariants. World Scientific, River Edge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob Coecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coecke, B., Spekkens, R.W. Picturing classical and quantum Bayesian inference. Synthese 186, 651–696 (2012). https://doi.org/10.1007/s11229-011-9917-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-011-9917-5

Keywords

Navigation