Skip to main content
Log in

Edge-disjoint node-independent spanning trees in dense Gaussian networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Independent trees are used in building secure and/or fault-tolerant network communication protocols. They have been investigated for different network topologies including tori. Dense Gaussian networks are potential alternatives for two-dimensional tori. They have similar topological properties; however, they are superiors in carrying communications due to their node-distance distributions and smaller diameters. No result on fault-tolerant communications in Gaussian networks exists in the literature. In this paper, we present constructions of edge-disjoint node-independent spanning trees in dense Gaussian networks. Based on the constructed trees, we design novel fault-tolerant communication algorithms that could be used in fault-tolerant routing, broadcasting, or secure message distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alsaleh O, Bose B, Hamdaoui B (2015) One-to-many node-disjoint paths routing in dense gaussian networks. Comput J 58(2):173–187

    Article  Google Scholar 

  2. Arabnia H, Bhandarkar S (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomput 10(3):243–269

    Article  MATH  Google Scholar 

  3. Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: The Proceedings of the 7th annual international high performance computing conference. Calgary, Alberta, Canada, pp 349–357

  4. Bao F, Igarashi Y, Öhring SR (1998) Reliable broadcasting in product networks. Discrete Appl Math 83(1–3):3–20

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnes GH, Brown RM, Kato M, Kuck DJ, Slotnick DL, Stokes R (1968) The ILLIAC IV computer. IEEE Trans Comput C 17(8):746–757

    Article  MATH  Google Scholar 

  6. Beivide R, Herrada E, Balcázar JL, Arruabarrena A (1991) Optimal distance networks of low degree for parallel computers. IEEE Trans Comput 40(10):1109–1124. doi:10.1109/12.93744

    Article  MathSciNet  Google Scholar 

  7. Bhandarkar S, Arabnia H (1995) The hough transform on a reconfigurable multi-ring network. J Parallel Distrib Comput 24(1):107–114

    Article  Google Scholar 

  8. Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor theoretical properties and algorithms. Parallel Comput. 21(11):1783–1805

    Article  Google Scholar 

  9. Bhandarkar SM, Arabnia HR, Smith JW (1995) A reconfigurable architecture for image processing and computer vision. Int J Pattern Recognit Artif Intell 09(02):201–229

    Article  Google Scholar 

  10. Bose B, Broeg B, Kwon Y, Ashir Y (1995) Lee distance and topological properties of k-ary n-cubes. IEEE Trans Comput 44(8):1021–1030

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang YH, Yang JS, Chang JM, Wang YL (2015) A fast parallel algorithm for constructing independent spanning trees on parity cubes. Appl Math Comput 268:489–495

    MathSciNet  Google Scholar 

  12. Cheng B, Fan J, Jia X (2015) Dimensional-permutation-based independent spanning trees in bijective connection networks. IEEE Trans Parallel Distrib Syst 26(1):45–53. doi:10.1109/TPDS.2014.2307871

    Article  Google Scholar 

  13. Dally WJ, Towles BP (2004) Principles and practices of interconnection networks. Elsevier, San Francisco, CA, USA

    Google Scholar 

  14. Esser R, Knecht R (1993) Intel Paragon XP/S-Architecture and software environment. Springer, Berlin Heidelberg

    Book  Google Scholar 

  15. Flahive M, Bose B (2010) The topology of Gaussian and Eisenstein–Jacobi interconnection networks. IEEE Trans Parallel Distrib Syst 21(8):1132–1142. doi:10.1109/TPDS.2009.132

    Article  Google Scholar 

  16. Fragopoulou P, Akl SG (1996) Edge-disjoint spanning trees on the star network with applications to fault tolerance. IEEE Trans Comput 45(2):174–185. doi:10.1109/12.485370

    Article  MATH  Google Scholar 

  17. Itai A, Rodeh M (1988) The multi-tree approach to reliability in distributed networks. Inf Comput 79(1):43–59. doi:10.1016/0890-5401(88)90016-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Jordan J, Potratz C (1965) Complete residue systems in the Gaussian integers. Math Mag 38(1):1–12

    Article  MathSciNet  MATH  Google Scholar 

  19. Kong L, Ali M, Deogun JS (2006) Building redundant multicast trees for preplanned recovery in WDM optical networks. J High Speed Netw 15(4):379–398

    Google Scholar 

  20. Leighton FT (1992) Introduction to parallel algorithms and architectures: arrays, trees, hypercubes. Morgan Kauffman, San Francisco, CA, USA

    MATH  Google Scholar 

  21. Lin JC, Yang JS, Hsu CC, Chang JM (2010) Independent spanning trees vs. edge-disjoint spanning trees in locally twisted cubes. Inf Process Lett 110(10):414–419. doi:10.1016/j.ipl.2010.03.012

    Article  MathSciNet  MATH  Google Scholar 

  22. Martinez C, Beivide R, Stafford E, Moreto M, Gabidulin EM (2008) Modeling toroidal networks with the Gaussian integers. IEEE Trans Comput 57(8):1046–1056

    Article  MathSciNet  Google Scholar 

  23. Martínez C, Vallejo E, Beivide R, Izu C, Moretó M (2006) Dense Gaussian networks: suitable topologies for on-chip multiprocessors. Int J Parallel Program 34(3):193–211. doi:10.1109/TC.2008.57

    Article  MATH  Google Scholar 

  24. Ncube C (1988) The ncube family of high-performance parallel computer systems. In: Proceedings of the Third Conference on Hypercube Concurrent Computers and Applications: Architecture, Software, Computer Systems, and General Issues, vol 1, C3P. ACM, New York, NY, USA, pp 847–851. doi:10.1145/62297.62415

  25. Research IC (1993) Cray T3D system architecture overview manual

  26. Scott SL, Thorson GM (1996) The cray T3E network: adaptive routing in a high performance 3D torus. In: Proceedings of the hot interconnects IV, August 1996, pp 157–160

  27. Seitz CL (1985) The cosmic cube. Commun ACM 28(1):22–33

    Article  MathSciNet  Google Scholar 

  28. Shamaei, A, Bose, B, Flahive, M (2014) Higher dimensional Gaussian networks. In: Proceedings of the 2014 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW ’14, pp 1438–1447. IEEE Computer Society, Washington, DC, USA. doi:10.1109/IPDPSW.2014.161

  29. Slotnick, DL, Borck, WC, McReynolds, RC (1962) The solomon computer. In: Proceedings of the December 4-6, 1962, Fall Joint Computer Conference, AFIPS ’62 (Fall). ACM, New York, NY, USA, pp 97–107. doi:10.1145/1461518.1461528

  30. Touzene A (2002) Edges-disjoint spanning trees on the binary wrapped butterfly network with applications to fault tolerance. Parallel Comput 28(4):649–666. doi:10.1016/S0167-8191(02)00073-X

    Article  MathSciNet  MATH  Google Scholar 

  31. Touzene A (2015) On all-to-all broadcast in dense Gaussian network on-chip. IEEE Trans Parallel Distrib Syst 26(4):1085–1095

    Article  Google Scholar 

  32. Touzene A, Day K, Monien B (2005) Edge-disjoint spanning trees for the generalized butterfly networks and their applications. J Parallel Distrib Comput 65(11):1384–1396. doi:10.1016/j.jpdc.2005.05.009

    Article  MATH  Google Scholar 

  33. Tseng YC, Wang SY, Ho CW (1996) Efficient broadcasting in wormhole-routed multicomputers: a network-partitioning approach. IEEE Trans Parallel Distrib Syst 10:44–61

    Article  Google Scholar 

  34. Wang H, Blough DM (2001) Multicast in wormhole-switched torus networks using edge-disjoint spanning trees. J Parallel Distrib Comput 61(9):1278–1306. doi:10.1006/jpdc.2001.1751

    Article  MATH  Google Scholar 

  35. Williams S, Waterman A, Patterson D (2009) Roofline: an insightful visual performance model for multicore architectures. Commun ACM 52(4):65–76

    Article  Google Scholar 

  36. Yang JS, Chan HC, Chang JM (2011) Broadcasting secure messages via optimal independent spanning trees in folded hypercubes. Discrete Appl Math 159(12):1254–1263. doi:10.1016/j.dam.2011.04.014

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang JS, Chang JM (2014) Optimal independent spanning trees on cartesian product of hybrid graphs. Comput J 57(1):93–99

    Article  Google Scholar 

  38. Yang, JS, Chang, JM, Chan, HC (2009) Independent spanning trees on folded hypercubes. In: Proceedings of the 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks, ISPAN ’09. IEEE Computer Society, Washington, DC, USA, pp. 601–605. doi:10.1109/I-SPAN.2009.55

  39. Yang JS, Chang JM, Pai KJ, Chan HC (2015) Parallel construction of independent spanning trees on enhanced hypercubes. IEEE Trans Parallel Distrib Syst 26(11):3090–3098. doi:10.1109/TPDS.2014.2367498

    Article  Google Scholar 

  40. Yang JS, Wu MR, Chang JM, Chang YH (2015) A fully parallelized scheme of constructing independent spanning trees on Mobius cubes. J Supercomput 71(3):952–965. doi:10.1007/s11227-014-1346-z

    Article  Google Scholar 

  41. Zhang Z, Guo Z, Yang Y (2013) Efficient all-to-all broadcast in Gaussian on-chip networks. IEEE Trans Comput 62(10):1959–1971

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bader AlBdaiwi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlBdaiwi, B., Hussain, Z., Cerny, A. et al. Edge-disjoint node-independent spanning trees in dense Gaussian networks. J Supercomput 72, 4718–4736 (2016). https://doi.org/10.1007/s11227-016-1768-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-016-1768-x

Keywords

Navigation