Skip to main content
Log in

Micro-solvation of a bisphosphonate group: an ab initio and effective fragment potential analysis

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Bisphosphonates are very important in diagnosis and treatment of many diseases related to bone. These compounds are soluble in water and have complex hydrogen bond patterns. To investigate the role of H-bonding in their stability, conformational space of two protonation states of methylene bisphosphonate (MBP) and 1-hydroxyethylidene-1,1-diphosphonate (HEDP) in aqueous medium were studied using ab initio calculations, with focus on the ability of effective fragment potential (EFP) to represent the solvent effect. Monte-Carlo global minimum search which performed in this study resulted in 2, 6, 9, and 27micro-solvated structures for MBP-HL, MBP-H2L, HEDP-HL, and HEDP-H2L, respectively. The most stable structures and their equilibrium populations were analyzed at two protonation states and both inter- and intra-molecular H-bond patterns were determined by using geometrical criteria. In comparison with previous studies that have been performed in implicit solvent medium, it was shown that the explicit solvent-solute interactions will change the relative stability and population of different conformers. However, the intra-molecular H-bonds are still more determinative in stability of different conformers in comparison with inter-molecular ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Russell G (2011) Bone 49:2–19

    Article  CAS  Google Scholar 

  2. Fleisch H (2007) Orthopade 36:103–104 106-9

    Article  CAS  Google Scholar 

  3. Martin MB, Grimley JS, Lewis JC, Heath HT, Bailey BN, Kendrick H, Yardley V, Caldera A, Lira R, Urbina JA, Moreno SN, Docampo R, Croft SL, Oldfield E (2001) J. Med. Chem. 44(6):909–916

    CAS  Google Scholar 

  4. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M (2000) Blood 96:384–392

    CAS  Google Scholar 

  5. Sanders JM, Ghosh S, Chan JM, Meints G, Wang H, Raker AM, Song Y, Colantino A, Burzynska A, Kafarski P, Morita CT, Oldfield E (2004) J Med Chem 47:375–384

    Article  CAS  Google Scholar 

  6. Ezra A, Golomb G (2000) Adv Drug Deliv Rev 42(3):175–195

    Article  CAS  Google Scholar 

  7. Papapoulos SE (2006) Bone 38:613–616

    Article  Google Scholar 

  8. Bijvoet O, Fleisch H, Canfield RE, Russell RGG (eds) (1995) Bisphosphonates on bone. Elsevier Science, Amsterdam, Holland

    Google Scholar 

  9. Mühlbauer RC, Bauss F, Schenk R, Janner M, Bosies E, Strein K, Fleisch H (1991) J. Bone Miner. Res 6(9):1003–1011

    Google Scholar 

  10. R. M. Smith, A. E. Martell. (2004) NIST Critically selected Stability Constants of Metal Complexes Database version 8.0, US Department of Commerce, National Institute of Standards and Technology

  11. Barnard W, Paul S, Rooyen PH, Cukrowski I (2009) J Raman Spectrosc 40:1935–1941

    Article  CAS  Google Scholar 

  12. Zenobi MC, Luengo CV, Avena M, Rueda EH (2008) Spectrochim Acta A 70:270–276

    Article  Google Scholar 

  13. Loginova LP, Levin IV, Matveeva AG, Pisareva SA, Nifantév EE (2004) Russian chemical bulletin. International Edition 53(9):2000–2007

    CAS  Google Scholar 

  14. Rooijen NV (1993) Calcif Tissue Int 52:407–410

    Article  Google Scholar 

  15. Rasanen JP, Pohjala E, Pakkanen TA (1996) J Chem Soc Perkin Trans 2:39–47

    Article  Google Scholar 

  16. Rasanen JP, Pohjala E, Pakkanen TA, Nikander H (1996) J PhysChem 100:8230–8239

    CAS  Google Scholar 

  17. Robinson J, Cukrowski I, Marques HM (2006) J Mol Struc 825:134–142

    Article  CAS  Google Scholar 

  18. Ohno K, Mori K, Orita M, Takeuchi M (2011) Current med. Chem 18:220–233

    CAS  Google Scholar 

  19. Arabieh M, Karimi-Jafari MH, Ghannadi-Maragheh (2013) M. J Mol Model 19:427–438

    Article  CAS  Google Scholar 

  20. Ashouri M, Magharia A, Karimi-Jafari MH (2015) Phys Chem Chem Phys 17:13290–13300

    Article  CAS  Google Scholar 

  21. Mennucci B, Tomasi J (1997) J Chem Phys 106(12):5151–5158

    Article  CAS  Google Scholar 

  22. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105(8):2999–3093

    Article  CAS  Google Scholar 

  23. Senn HM, Thiel W (2009) Angew Chem Int Ed 48:1198–1229

    Article  CAS  Google Scholar 

  24. Gordon MS, Smith QA, Xu P, Slipchenko LV (2013) Annu Rev Phys Chem 64:553–578

    Article  CAS  Google Scholar 

  25. Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Garmer D, Basch H, Cohen D (1996) J Chem Phys 105:1968–1986

    Article  CAS  Google Scholar 

  26. Gordon MS, Freitag MA, Bandyopadhyay P, Jensen JH, Kairys V, Stevens WJ (2001) The effective fragment potential method: a QM-based MM approach to modeling environmental effects in chemistry. J Phys Chem A 105:293–307

    Article  CAS  Google Scholar 

  27. Adamovic I, Freitag MA, Gordon MS (2003) Density functional theory based effective fragment potential method. J Chem Phys 118:6725–6732

    Article  CAS  Google Scholar 

  28. Ghosh D, Kosenkov D, Vanovschi V, Williams CF, Herbert JM, Gordon MS, Schmidt MW, Slipchenko LV, Krylov AI (2010) J Phys Chem A 114:12739–12754

    Article  CAS  Google Scholar 

  29. Adamovic I, Gordon MS (2006) J Phys Chem A 110:10267–10273

    Article  CAS  Google Scholar 

  30. Adamovic I, Li H, Lamm MH, Gordon MS (2006) J Phys Chem A 110:519–525

    Article  CAS  Google Scholar 

  31. Slipchenko LV, Gordon MS (2007) J Comput Chem 28:276–291

    Article  CAS  Google Scholar 

  32. Smith T, Slipchenko LV, Gordon MS (2008) J Phys Chem A 112:5286–5294

    Article  CAS  Google Scholar 

  33. Smith QA, Gordon MS, Slipchenko LV (2011) J Phys Chem A 115:4598–4609

    Article  CAS  Google Scholar 

  34. Smith QA, Gordon MS, Slipchenko LV (2011) J Phys Chem A 115:11269–11276

    Article  CAS  Google Scholar 

  35. Hands MD, Slipchenko LV (2012) J Phys Chem B 116:2775–2786

    Article  CAS  Google Scholar 

  36. Slipchenko LV, Gordon MS (2009) J Phys Chem A 113:2092–2102

    Article  CAS  Google Scholar 

  37. Pranami G, Slipchenko L, Lamm MH, Gordon MS (2009) Coarse-grained intermolecular potentials derived from the effective fragment potential: application to water, benzene, and carbon tetrachloride. In: York DM, Lee T-S (eds) Multi-scale quantum models for Biocatalysis. Springer, New York

    Google Scholar 

  38. Flick JC, Kosenkov D, Hohenstein EG, Sherrill CD, Slipchenko LV (2012) J Chem. Theory Comput 8:2835–2843

    Article  CAS  Google Scholar 

  39. Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: GAMESS a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry. Elsevier, Amsterdam

    Google Scholar 

  40. Kong J, White CA, Krylov AI, Sherrill D, Adamson RD, Furlani TR, Lee MS, Lee AM, Gwaltney SR, Adams TR, Ochsenfeld C, Gilbert ATB, Kedziora GS, Rassolov VA, Maurice DR, Nair N, Shao Y, Besley NA, Maslen PE, Dombroski JP, Daschel H, Zhang W, Korambath PP, Baker J, Byrd EFC, Voorhis TV, Oumi M, Hirata S, Hsu CP, Ishikawa N, Florian J, Warshel A, Johnson BG, Gill PMW, Gordon MH, Pople JA (2000) J Comput Chem 21:1532–1548

    Article  CAS  Google Scholar 

  41. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio Jr RA, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Voorhis TV, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF, Kong J, Krylov AI, Gill PMW, Gordon MH (2006) Phys Chem Chem Phys 8:3172–3191

    Article  CAS  Google Scholar 

  42. Mullin JM, Gordon MS (2009) J Phys Chem B 113:8657–8669

    Article  CAS  Google Scholar 

  43. Mark P, Nilsson L (2001) J Phys Chem A 105:9954–9960

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitra Ashouri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashouri, M., Karimi-Jafari, M.H. & Maghari, A. Micro-solvation of a bisphosphonate group: an ab initio and effective fragment potential analysis. Struct Chem 28, 1201–1210 (2017). https://doi.org/10.1007/s11224-017-0925-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0925-z

Keywords

Navigation