Skip to main content
Log in

Statistical methods and molecular docking for the prediction of thyroid hormone receptor subtype binding affinity and selectivity

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The development of compounds that selectively modulate thyroid hormone action by serving as subtype-selective ligands of the thyroid hormone receptors (TRs) would be useful for clinical therapy. In the present work, quantitative structure-activity relationship (QSAR) models by adopting molecular descriptors to predict the TR binding activity were established based on a data set of TR ligands. The linear (multiple linear regression (MLR) and partial least squares regression (PLSR)) and nonlinear (support vector machine regression (SVR)) methods were employed to investigate the relationship between structural properties and binding activities. The proposed PLSR model was slightly superior to the MLR model and SVR model, as indicated by the reasonable statistical properties (TRβ: Rtr2 = 0.9594, Qte2 = 0.8091. TRα: Rtr2 = 0.9705, Qte2 = 0.8057). Additionally, molecular docking simulations were also performed to study the probable binding modes of the ligands and the TR subtype selectivity. The results indicate that substituents located in region A, region B, and region C and the orientation of these groups might result in the subtype selectivity based on the hydrogen bonding and electrostatic interactions. The derived QSAR models together with the molecular docking results have good potential in facilitating the discovery of novel TR ligands with improved activity and subtype selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142

    CAS  Google Scholar 

  2. Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–1304

    CAS  Google Scholar 

  3. Malm J (2004) Thyroid hormone ligands and metabolic diseases. Curr Pharm Des 10:3525–3532

    Article  CAS  Google Scholar 

  4. Yen PM, Ando S, Xu F, Ying L, Maruvada P, Xia X (2006) Thyroid hormone action at the cellular, genomic and target gene levels. Molecular & Cellular Endocrinology 246:121–127

    Article  CAS  Google Scholar 

  5. Zhang J, Lazar MA (2000) The mechanism of action of thyroid hormones. Br J Clin Pharmacol 62:439–466

    CAS  Google Scholar 

  6. Chan IH, Privalsky ML (2009) Isoform-specific transcriptional activity of overlapping target genes that respond to thyroid hormone receptors alpha1 and beta1. Mol Endocrinol 23:1758–1775

    Article  CAS  Google Scholar 

  7. Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS, Vennström B, Samarut J (2006) International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev 58:705–711

    Article  CAS  Google Scholar 

  8. Wu Y, Koenig RJ (2000) Gene regulation by thyroid hormone. Trends in Endocrinology & Metabolism Tem 11:207–211

    Article  CAS  Google Scholar 

  9. Bassett JHD, Harvey CB, Williams GR (2003) Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Molecular & Cellular Endocrinology 213:1–11

    Article  CAS  Google Scholar 

  10. Davis PJ, Davis FB, Lin HY, Mousa SA, Zhou M, Luidens MK (2009) Translational implications of nongenomic actions of thyroid hormone initiated at its integrin receptor. American Journal of Physiology Endocrinology & Metabolism:297

  11. Forrest D, Vennström B (2000) Functions of thyroid hormone receptors in mice. Thyroid Official Journal of the American Thyroid Association 10:41–52

    Article  CAS  Google Scholar 

  12. Nguyen NH, Apriletti JW, Baxter JD, Scanlan TS (2005) Hammett analysis of selective thyroid hormone receptor modulators reveals structural and electronic requirements for hormone antagonists. J Am Chem Soc 127:4599–4608

    Article  CAS  Google Scholar 

  13. Johansson C, Vennström B, Thorén P (1998) Evidence that decreased heart rate in thyroid hormone receptor-alpha1-deficient mice is an intrinsic defect. Am J Phys 275:640–646

    Google Scholar 

  14. Takeda K, Sakurai A, Degroot LJ, Refetoff S (1992) Recessive inheritance of thyroid hormone resistance caused by complete deletion of the protein-coding region of the thyroid hormone receptor-beta gene. Journal of Clinical Endocrinology & Metabolism 74:49–55

    CAS  Google Scholar 

  15. Baxter JD, Dillmann WH, West BL, Huber R, Furlow JD, Fletterick RJ, Webb P, Apriletti JW, Scanlan TS (2001) Selective modulation of thyroid hormone receptor action ☆. Journal of Steroid Biochemistry & Molecular Biology 76:31–42

    Article  CAS  Google Scholar 

  16. Collazo A-MG, Koehler KF, Garg N, Färnegårdh M, Husman B, Ye L, Ljunggren J, Mellström K, Sandberg J, Grynfarb M (2006) Thyroid receptor ligands. Part 5: novel bicyclic agonist ligands selective for the thyroid hormone receptor β. Bioorg Med Chem Lett 16:1240–1244

    Article  Google Scholar 

  17. Garg N, Li Y-L, Collazo AMG, Litten C, Ryono DE, Zhang M, Caringal Y, Brigance RP, Meng W, Washburn WN (2007) Thyroid receptor ligands. Part 8: thyromimetics derived from N-acylated-α-amino acid derivatives displaying modulated pharmacological selectivity compared with KB-141. Bioorg Med Chem Lett 17:4131–4134

    Article  CAS  Google Scholar 

  18. Hangel JJ, Al E, et al. (2004) Thyroid receptor ligands. Part 2: thyromimetics with improved selectivity for the thyroid hormone receptor beta. Bioorg Med Chem Lett 14:3549–3553

    Article  Google Scholar 

  19. Hedfors A, Appelqvist T, Carlsson B, Bladh LG, Litten C, Agback P, Grynfarb M, Koehler KF, Malm J (2005) Thyroid receptor ligands. 3. Design and synthesis of 3,5-dihalo-4-alkoxyphenylalkanoic acids as indirect antagonists of the thyroid hormone receptor. J Med Chem 48:3114–3117

    Article  CAS  Google Scholar 

  20. Li Y-L, Litten C, Koehler KF, Mellström K, Garg N, Collazo AMG, Färnegård M, Grynfarb M, Husman B, Sandberg J (2006) Thyroid receptor ligands. Part 4: 4′-amido bioisosteric ligands selective for the thyroid hormone receptor beta. Bioorg Med Chem Lett 16:884–886

    Article  CAS  Google Scholar 

  21. Malm J, Gordon S, Brandt P, Carlsson B, Agback P, Saeidi AB, Sandberg J (2007) Thyroid receptor ligands. Part 7: indirect antagonists of the thyroid hormone receptor with improved affinity. Bioorg Med Chem Lett 17:2018–2021

    Article  CAS  Google Scholar 

  22. Ye L , Li YL, Mellström K, Mellin C,  Bladh LG, Koehler K,  Garg N, Collazo AMG,  Litten C, Husman B (2003) Thyroid receptor ligands. 1. Agonist ligands selective for the thyroid receptor β1. J Med Chem 46:1580–1588

  23. Boyer SH, Jiang H, Jacintho JD, Reddy MV, Li H, Li W, Godwin JL, Schulz WG, Cable EE, Hou J (2008) Synthesis and biological evaluation of a series of liver-selective phosphonic acid thyroid hormone receptor agonists and their prodrugs. J Med Chem 51:7075–7093

    Article  CAS  Google Scholar 

  24. Burkholder TP, Cunningham BE, Clayton JR, Lander PA, Brown ML, Doti RA, Durst GL, Montrose-Rafizadeh C, King C, Osborne HE (2015) Design and synthesis of a novel series of [1-(4-hydroxy-benzyl)-1H-indol-5-yloxy]-acetic acid compounds as potent, selective, thyroid hormone receptor β agonists. Bioorg Med Chem Lett 25:1377–1380

    Article  CAS  Google Scholar 

  25. Shiohara H, Nakamura T, Kikuchi N, Ozawa T, Nagano R, Matsuzawa A, Ohnota H, Miyamoto T, Ichikawa K, Hashizume K (2012) Discovery of novel indane derivatives as liver-selective thyroid hormone receptor β (TRβ) agonists for the treatment of dyslipidemia. Bioorg Med Chem 20:3622–3634

    Article  CAS  Google Scholar 

  26. Shiohara H, Nakamura T, Kikuchi N, Ozawa T, Matsuzawa A, Nagano R, Ohnota H, Miyamoto T, Ichikawa K, Hashizume K (2013) Design, synthesis, and structure–activity relationship (SAR) of N-[7-(4-hydroxyphenoxy)-6-methylindan-4-yl] malonamic acids as thyroid hormone receptor β (TRβ) selective agonists. Bioorg Med Chem 21:592–607

    Article  CAS  Google Scholar 

  27. Todeschini, R., Consonni, V., (2000). Handbook of molecular descriptors

  28. Wang F, Li Y, Ma Z, Wang X, Wang Y (2012) Structural determinants of benzodiazepinedione/peptide-based p53-HDM2 inhibitors using 3D-QSAR, docking and molecular dynamics. J Mol Model 18:295–306

    Article  Google Scholar 

  29. Wang F, Ma Z, Li Y, Zhu S, Xiao Z, Zhang H, Wang Y (2011) Development of in silico models for pyrazoles and pyrimidine derivatives as cyclin-dependent kinase 2 inhibitors. J Mol Graph Model 30:67–81

    Article  Google Scholar 

  30. Wang Y, Li Y, Ding J, Wang Y, Chang Y (2008b) Prediction of binding affinity for estrogen receptor α modulators using statistical learning approaches. Mol Divers 12:93–102

    Article  CAS  Google Scholar 

  31. Wang Y, Li Y, Ding J, Jiang Z, Chang Y (2008a) Estimation of bioconcentration factors using molecular electro-topological state and flexibility. SAR QSAR Environ Res 19:375–395

    Article  CAS  Google Scholar 

  32. Hansch, C., Leo, A., (1979). Substituent constants for correlation analysis in chemistry and biology. Wiley

  33. Sjöström M, Wold S, Lindberg W, Persson J-Å, Martens H (1983) A multivariate calibration problem in analytical chemistry solved by partial least-squares models in latent variables. Anal Chim Acta 150:61–70

    Article  Google Scholar 

  34. Ding G, Chen J, Qiao X, Huang L, Lin J, Chen X (2006) Quantitative relationships between molecular structures, environmental temperatures and solid vapor pressures of PCDD/Fs. Chemosphere 62:1057–1063

    Article  CAS  Google Scholar 

  35. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  36. Wold S, Ruhe A, Wold H, Dunn III WJ (1984) The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J Sci Stat Comput 5:735–743

  37. Liu H, Xue C, Zhang R, Yao X, Liu M, Hu Z, Fan BT (2004) Quantitative prediction of log k of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine. J Chem Inf Comput Sci 44:1979–1986

    Article  CAS  Google Scholar 

  38. Xue C, Zhang R, Liu H, Yao X, Liu M, Hu Z, Fan BT (2004) QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine. J Chem Inf Comput Sci 44:1693–1700

    Article  CAS  Google Scholar 

  39. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222

    Article  Google Scholar 

  40. Kohonen T, Somervuo P (1998) Self-organizing maps of symbol strings. Neurocomputing 21:19–30

    Article  Google Scholar 

  41. Jaworska J (2005) QSAR applicability domain estimation by projection of the training set in descriptor space: a review. Alternatives to Laboratory Animals Atla 33:445–459

    CAS  Google Scholar 

  42. Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemometrics & Intelligent Laboratory Systems 145:22–29

    Article  CAS  Google Scholar 

  43. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  44. Patronov A, Dimitrov I, Flower DR, Doytchinova I (2011) Peptide binding prediction for the human class II MHC allele HLA-DP2: a molecular docking approach. BMC Struct Biol 11:1

    Article  Google Scholar 

  45. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  46. Guha R, Serra JR, Jurs PC (2004) Generation of QSAR sets with a self-organizing map. J Mol Graph Model 23:1–14

    Article  CAS  Google Scholar 

  47. Jain HK, Agrawal RK (2006) QSAR analysis of indomethacin derivatives as selective COX–2 inhibitors. Internet Electronic Journal of Molecular Design 5:224–236

    CAS  Google Scholar 

  48. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717

    Article  CAS  Google Scholar 

  49. Khajeh A, Modarress H (2012) QSPR prediction of surface tension of refrigerants from their molecular structures. Int J Refrig 35:150–159

    Article  CAS  Google Scholar 

  50. Manivannan E, Chaturvedi S (2012) Analogue-based design, synthesis and docking of non-steroidal anti-inflammatory agents. Part 2: methyl sulfanyl/methyl sulfonyl substituted 2, 3-diaryl-2, 3-dihydro-1H-quinazolin-4-ones. Bioorg Med Chem 20:7119–7127

    Article  CAS  Google Scholar 

  51. MacKay DJ (1992) A practical Bayesian framework for backpropagation networks. Neural Comput 4:448–472

    Article  Google Scholar 

  52. Salum LB, Polikarpov I, Andricopulo AD (2008) Structure-based approach for the study of estrogen receptor binding affinity and subtype selectivity. J Chem Inf Model 48:2243–2253

    Article  CAS  Google Scholar 

  53. Schölkopf, B., Burges, C. J., (1999). Advances in kernel methods: support vector learning. MIT press

  54. Schuur J, Gasteiger J (1997) Infrared spectra simulation of substituted benzene derivatives on the basis of a 3D structure representation. Anal Chem 69:2398–2405

    Article  CAS  Google Scholar 

  55. Todeschini R, Gramatica P (2001) New 3D molecular descriptors: the WHIM theory and QSAR applications. Perspectives in Drug Discovery & Design 9-11:355–380

    Article  Google Scholar 

  56. Todeschini R, Gramatica P (1997a) 3D-modelling and prediction by WHIM descriptors. Part 6. Application of WHIM descriptors in QSAR studies. Quantitative Structure-Activity Relationships 16:120–125

    Article  CAS  Google Scholar 

  57. Todeschini R, Gramatica P (1997b) SD-modelling and prediction by WHIM descriptors. Part 5. Theory development and chemical meaning of WHIM descriptors. Quantitative Structure-Activity Relationships 16:113–119

    Article  CAS  Google Scholar 

  58. Todeschini R, Lasagni M, Marengo E (1994) New molecular descriptors for 2D and 3D structures. Theory Journal of chemometrics 8:263–272

    Article  CAS  Google Scholar 

  59. Todeschini R, Gramatica P, Provenzani R, Marengo E (1995) Weighted holistic invariant molecular descriptors. Part 2. Theory development and applications on modeling physicochemical properties of polyaromatic hydrocarbons. Chemom Intell Lab Syst 27:221–229

    Article  CAS  Google Scholar 

  60. Todeschini R, Vighi M, Finizio A, Gramatica P (1997) 30-modelling and prediction by WHIM descriptors. Part 8. Toxicity and physico-chemical properties of environmental priority chemicals by 2D-TI and 3D-WHIM descriptors. SAR QSAR Environ Res 7:173–193

    Article  CAS  Google Scholar 

  61. Todeschini R, Vighi M, Provenzani R, Finizio A, Gramatica P (1996a) Modeling and prediction by using WHIM descriptors in QSAR studies: toxicity of heterogeneous chemicals on Daphnia magna. Chemosphere 32:1527–1545

    Article  CAS  Google Scholar 

  62. Todeschini R, Bettiol C, Giurin G, Gramatica P, Miana P, Argese E (1996b) Modeling and prediction by using WHIM descriptors in QSAR studies: submitochondrial particles (SMP) as toxicity blosensors of chlorophenols. Chemosphere 33:71–79

    Article  CAS  Google Scholar 

  63. Vedani A, Dobler M, Lill MA (2006) The challenge of predicting drug toxicity in silico. Basic & clinical pharmacology & toxicology 99:195–208

    Article  CAS  Google Scholar 

  64. Vedani A, Zumstein M, Lill MA, Ernst B (2007) Simulating α/β selectivity at the human thyroid hormone receptor: consensus scoring using multidimensional QSAR. ChemMedChem 2:78–87

    Article  CAS  Google Scholar 

  65. Du J, Qin J, Liu H, Yao X (2008) 3D-QSAR and molecular docking studies of selective agonists for the thyroid hormone receptor β. J Mol Graph Model 27:95–104

    Article  CAS  Google Scholar 

  66. Li F, Xie Q, Li X, Li N, Chi P, Chen J, Wang Z, Hao C (2010) Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-β: in vitro and in silico investigations. Environmental health perspectives (Online) 118:602

    Article  CAS  Google Scholar 

  67. Kim KH, Greco G, Novellino E (1998) A critical review of recent CoMFA applications. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design – recent advances, vol. 3. Kluwer Academic Publishers, New York, pp. 257–315

  68. Sutherland JJ, O'Brien LA, Weaver DF (2004) A comparison of methods for modeling quantitative structure-activity relationships. J Med Chem 47:5541–5554

    Article  CAS  Google Scholar 

  69. Kuntz ID, Meng EC, Shoichet BK (1994) Structure-based molecular design. Acc Chem Res 27:117–123

    Article  CAS  Google Scholar 

  70. Wang FF, Wei Y, Shi YH, Cheng XR, Le GW (2015) Structure-based approach for the study of thyroid hormone receptor binding affinity and subtype selectivity. J Biomol Struct Dyn 34:2251–2267

Download references

Acknowledgements

The study was supported by the 12th Five-Year Plan for Science and Technology Development (No. 2012BAD33B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei Le.

Electronic supplementary material

ESM 1

Supplementary material is available on the publisher’s website along with the published article (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Shi, Y. & Le, G. Statistical methods and molecular docking for the prediction of thyroid hormone receptor subtype binding affinity and selectivity. Struct Chem 28, 833–847 (2017). https://doi.org/10.1007/s11224-016-0876-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0876-9

Keywords

Navigation