Skip to main content

Advertisement

Log in

Structure and dynamics of a free aquaporin (AQP1) by a coarse-grained Monte Carlo simulation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Structure and dynamics of a free aquaporin (AQP1) are studied by a coarse-grained Monte Carlo simulation as a function of temperature using a phenomenological potential with the input of a knowledge-based residue–residue interaction. Response of the radius of gyration (R g) of the protein to the temperature (T) is found to be nonlinear: Decay of R g at T ≤ T c is followed by a continuous increase at T ≥ T c before reaching its saturation. In thermo-responsive regime, the protein exhibits segmental globularization with the persistence of three regions along its sequence involving residues 1M–25V and 250V–269K toward the beginning and end segments with a narrow intermediate region around 155A–163D. A detail analysis of the structure factor S(q) shows a global random coil conformation at high temperatures with an effective dimension D e ~ 1.74 and a globular structure (D e ~ 3) at low temperatures. In thermo-responsive regime, the variation of S(q) with the wave vector q reveals a systematic redistribution of self-organizing residues (in globular and fibrous sections) that depends on the length scale and the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Papadopoulos MC, Saadoun S (2015) Key roles of aquaporins in tumor biology. Biochim Biophys Acta. doi:10.1016/j.bbamem.2014.09.001

    Google Scholar 

  2. Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W (2007) Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc Natl Acad Sci USA 104:20719–20724

    Article  CAS  Google Scholar 

  3. Wang J, Feng L, Zhu Z, Zheng M, Wang D, Chen Z, Sun H (2015) Aquaporins as diagnostic and therapeutic targets in cancer: how far we are? J Transl Med 13:96

    Article  Google Scholar 

  4. To J, Torres J (2015) Can stabilization and inhibition of aquaporins contribute to future development of biomimetic membranes? Membranes 5:352–368

    Article  CAS  Google Scholar 

  5. Boassa D, Stamer WD, Yool AJ (2006) Ion channel function of aquaporin-1 natively expressed in choroid plexus. J Neurosci 26:7811–7819

    Article  CAS  Google Scholar 

  6. Ash WL, Zlomislic MR, Oloo EO, Tieleman DP (2004) Computer simulations of membrane proteins. Biochim Biophys Acta 1666:158–189

    Article  CAS  Google Scholar 

  7. Kong Y, Ma J (2001) Dynamic mechanisms of the membrane water channel aquaporin-1 (AQP1). PNAS 98:14345–14349

    Article  CAS  Google Scholar 

  8. Wang Y, Tajkhorshid E (2007) Molecular mechanisms of conduction and selectivity in aquaporin water channels. J Nutr 137:1509S–1515S

    CAS  Google Scholar 

  9. Jensen MO, Mouritsen OG (2006) Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF. Biophys J 90:2270–2284

    Article  CAS  Google Scholar 

  10. Hashido M, Kidera A, Ikeguchi M (2007) Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations. Biophys J 93:373–385

    Article  CAS  Google Scholar 

  11. Hashido M, Ikeguchi M, Kidera A (2005) Comparative simulations of aquaporin family: AQP1, AQPZ, AQP0 and GlpF. FEBS Lett 579:5549–5552

    Article  CAS  Google Scholar 

  12. Gumbart J, Wang Y, Aksimentiev A, Tajkhorshid E, Schulten K (2005) Molecular dynamics simulations of proteins in lipid bilayers. Curr Opin Struct Biol 15:423–431

    Article  CAS  Google Scholar 

  13. Yu J, Yool AJ, Schulten K, Tajkhorshid E (2006) Mechanism of gating and ion conductivity of a possible tetrameric pore in aquaporin-1. Structure 14:1411–1423

    Article  CAS  Google Scholar 

  14. Bond PJ, Holyoake J, Ivetac A, Khalid S, Sansom MSP (2007) Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J Struct Biol 157:593–605

    Article  CAS  Google Scholar 

  15. Lindahl E, Sansom MSP (2008) Membrane proteins: molecular dynamics simulations. Curr Opin Struct Biol 18:425–431

    Article  CAS  Google Scholar 

  16. Lyubartsev AP, Laaksonen A (1995) Calculation of effective interaction potential from radial distribution functions: a reverse Monte Carlo approach. Phys Rev E 52:3730–3737

    Article  CAS  Google Scholar 

  17. Zhou J, Chen S, Jiang S (2003) Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model. Langmuir 19:3472–3478

    Article  CAS  Google Scholar 

  18. van Giessen AE, Straub JE (2005) Mote Carlo simulations of polyalanine using a reduced model and statistics-based interaction potential. J Chem Phys 122:0249041–0249049

    Google Scholar 

  19. Reith D, Putz M, Muller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24:1624

    Article  CAS  Google Scholar 

  20. Pandey RB, Farmer BL (2010) Global structure of a human immunodeficiency virus-1 protease (1DIFA dimer) in an effective solvent medium by a Monte Carlo simulation. J Chem Phys 132:125101–125106

    Article  CAS  Google Scholar 

  21. Liwo A, Czaplewski C, Oldziej S, Scheraga HA (2008) Computational techniques for efficient conformational sampling of protein. Curr Opin Struct Biol 18:134–139

    Article  CAS  Google Scholar 

  22. Ercolessi F, Adams J (1994) Interatomic potentials from first-principle calculations: the force-matching method. Europhys Lett 26:583–588

    Article  CAS  Google Scholar 

  23. Zhou J, Thorpe IF, Izvekov S, Voth GA (2007) Coarse-grained peptide modeling using a systematic multiscale approach. Biophys J 92:4289–4303

    Article  CAS  Google Scholar 

  24. de Jong DH, Singh G, Drew Bennett WF, Arnarez C, Wassenar TA et al (2013) Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput 9:687–697

    Article  Google Scholar 

  25. Sorensen J, Xavier P, Skeby KK, Marrink SJ, Schiott B (2011) Protofibrillar assembly towards the formation of amyloid fibrils. J Phys Chem Lett 2:2385–2390

    Article  CAS  Google Scholar 

  26. Haliloglu T, Bahar I (1998) Coarse-grained simulations of conformational dynamics of proteins: application to apomyoglobin. Proteins 31:27–281

    Article  Google Scholar 

  27. Pandey RB, Farmer BL, Gerstman BS (2015) Self-assembly dynamics for the transition of a globular aggregate to a fibril network of lysozyme proteins via a coarse-grained Monte Carlo simulation. AIP Adv 5:092502-1–092502-12

    Article  Google Scholar 

  28. Mirau P, Farmer BL, Pandey RB (2015) Structural variation of alpha-synuclein with temperature by a coarse-grained approach with knowledge-based interactions. AIP Adv 5:092504-1–092504-10

    Article  Google Scholar 

  29. Tanaka S, Scheraga HA (1976) Medium and long range interaction parameters between amino acids for predicting three dimensional structures of proteins. Macromolecules 9:945–950

    Article  CAS  Google Scholar 

  30. Miyazawa S, Jernigan RL (1985) Estimation of effective inter residue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18:534–552

    Article  CAS  Google Scholar 

  31. Miyazawa S, Jernigan RL (1996) Residue–residue potentials with a favorable contact pair term for simulation and treading. J Mol Biol 256:623–644

    Article  CAS  Google Scholar 

  32. Betancourt MR, Thirumalai D (1999) Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci 2:361–369

    Google Scholar 

  33. Godzik A, Kolinski A, Skolnick J (1996) Knowledge-based potentials for protein folding: what can we learn from protein structures? Proteins 4:363–366

    CAS  Google Scholar 

  34. Huang S-Y, Xiaoqin Z (2011) Statistical mechanics-based method to extract atomic distance-dependent potentials from protein structures. Proteins 79:2648–2661

    Article  CAS  Google Scholar 

  35. Fritsche M, Pandey RB, Farmer BL, Heermann D (2012) Conformational temperature-dependent behavior of a histone h2ax: a coarse-grained Monte Carlo approach via knowledge-based interaction potentials. PLoS ONE 7:e32075-1–e32075-8

    Google Scholar 

  36. Pandey RB, Farmer BL (2012) Random coil to globular thermal response of a protein (H3.1) with three knowledge-based coarse-grained potentials. PLoS ONE 7:e49352-1–e49352-9

    Google Scholar 

  37. Pandey RB, Farmer BL (2013) Conformational response to solvent interaction and temperature of a protein (histone h3.1) by a multi-grained Monte Carlo simulation. PLoS ONE 8:e76069-1–e76069-9

    Google Scholar 

  38. Binder K (ed) (1995) Monte Carlo and molecular dynamics simulations in polymer science. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

We thank Minttu Virkki for suggesting us to look at AQP1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, R.B., Farmer, B.L. Structure and dynamics of a free aquaporin (AQP1) by a coarse-grained Monte Carlo simulation. Struct Chem 28, 625–633 (2017). https://doi.org/10.1007/s11224-016-0836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0836-4

Keywords

Navigation