Skip to main content
Log in

Tiling approach for the description of the sevenfold symmetry in quasicrystals

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

He from the centre of the realm upraised a Behistun, from which that of Farhad fled.

In such a Behistun, which seven columns had, he raised up to the heavens seven domes.

And in those walls, which touched upon the sky, he saw a rampart round the lofty spheres.

He saw seven domes within those walls built up after the nature of the planets seven.

Nizami Ganjavi, “The Seven Beauties”.

Abstract

An example of substitution rules for the construction of heptagonal rhombic tilings is proposed. Rigorous inflation/deflation rules make it possible to expand the tiling up to infinity without additional ad hoc rearrangements. The derived tilings are self-similar and consist of characteristic patterns with seven-pointed stars surrounded by similar seven-pointed stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bernal JD (1968) Q Rev Biophys 1:81–87

    Article  CAS  Google Scholar 

  2. Mackay AL (1986) Comput Math Appl 12B:21–37

    Article  Google Scholar 

  3. Mackay AL (1995) J Mol Struct Theochem 336:293–303

    Article  CAS  Google Scholar 

  4. Mackay AL (2002) Struct Chem 13:215–220

    Article  CAS  Google Scholar 

  5. Cartwright JHE, Mackay AL (2012) Phil Trans R Soc A 370:2807–2822

    Article  Google Scholar 

  6. Mackay AL (1986) Acta Cryst A42:55–56

    Article  CAS  Google Scholar 

  7. Mackay AL (1997) J Math Chem 21:197–209

    Article  CAS  Google Scholar 

  8. Schoen AH. The geometry garret. http://schoengeometry.com/c-infintil.html. Accessed 20 May 2016

  9. Shevchenko VY, Madison AE, Mackay AL (2007) Acta Crystallogr A 63:172–176

    Article  CAS  Google Scholar 

  10. Shevchenko VY, Madison AE, Mackay AL (2007) Struct Chem 18:343–346

    Article  CAS  Google Scholar 

  11. Steurer W (2007) Philos Mag 87:2707–2712

    Article  CAS  Google Scholar 

  12. Steurer W, Deloudi S (2009) Crystallography of quasicrystals: concepts, methods and structures. Springer, Berlin

    Google Scholar 

  13. Kleinert H (2011) Electron J Theor Phys 8:169–172

    Google Scholar 

  14. Danzer L (1995) Symmetry Cult Sci 6:133–136

    Google Scholar 

  15. Penrose R (1974) Bull Inst Math Appl 10:266–271

    Google Scholar 

  16. Gardner M (1997) Penrose tiles to trapdoor ciphers and the return of Dr. Matrix. The Mathematical Association of America, Washington

    Google Scholar 

  17. de Bruijn NG (1981) Kon Nederl Akad Wetensch Proc Ser A 84:39–52

    Article  Google Scholar 

  18. de Bruijn NG (1981) Kon Nederl Akad Wetensch Proc Ser A 84:53–66

    Article  Google Scholar 

  19. Nischke KP, Danzer L (1996) Discrete Comput Geom 15:221–236

    Article  Google Scholar 

  20. Harriss EO, Lamb JSW (2004) Theor Comput Sci 319:241–279

    Article  Google Scholar 

  21. Socolar JES (1989) Phys Rev B 39:10519–10551

    Article  CAS  Google Scholar 

  22. Goodman-Strauss C (1998) Ann Math 147:181–223

    Article  Google Scholar 

  23. Radin C (1994) Ann Math 139:661–702

    Article  Google Scholar 

  24. Lançon F, Billard L (1993) Phase Transit 44:37–46

    Article  Google Scholar 

  25. Franco BJO (1993) Phys Lett A 178:119–122

    Article  Google Scholar 

  26. García-Escudero J (1996) J Phys A: Math Gen 29:6877–6879

    Article  Google Scholar 

  27. Harriss EO (2005) Discrete Comput Geom 34:523–536

    Article  Google Scholar 

  28. Savard JJG. An example of a heptagonal tiling. http://www.quadibloc.com/math/hept01.htm. Accessed 20 May 2016

  29. Bonner J, Pelletier M (2012) In: Bosch R, McKenna D, Sarhangi R (eds) Bridges 2012: mathematics, music, art, architecture, culture. Tessellations Publishing, Phoenix, pp 141–148

  30. Bonner J, Pelletier M (2012) In: Bosch R, McKenna D, Sarhangi R (eds) Bridges 2012: mathematics, music, art, architecture, culture. Tessellations Publishing, Phoenix, pp 149–156

  31. Bodner BL (2012) In: Bosch R, McKenna D, Sarhangi R (eds) Bridges 2012: mathematics, music, art, architecture, culture. Tessellations Publishing, Phoenix, pp 157–164

  32. Aboufadil Y, Thalal A, Raghni MAEI (2014) J Appl Cryst 47:630–641

    Article  CAS  Google Scholar 

  33. Maloney GR (2015) Discrete Math Theor Comput Sci 17:397–414

    Google Scholar 

  34. Kari J, Rissanen M (2016) Discrete Comput Geom 55:972–996

    Article  Google Scholar 

  35. Gähler F, Kwan EE, Maloney GR (2015) Discrete Comput Geom 53:445–465

    Article  Google Scholar 

  36. Madison AE (2015) Struct Chem 26:923–942

    Article  CAS  Google Scholar 

  37. Madison AE (2015) RSC Adv 5:5745–5753

    Article  CAS  Google Scholar 

  38. Madison AE (2015) RSC Adv 5:79279–79297

    Article  CAS  Google Scholar 

  39. de Boissieu M (2012) Chem Soc Rev 41:6778–6786

    Article  Google Scholar 

  40. McSorley JP, Schoen AH (2013) Discrete Math 313:129–154

    Article  Google Scholar 

  41. Hargittai I (2014) Struct Chem 25:1321–1326

    Article  CAS  Google Scholar 

  42. Mermin ND (1992) Phys Rev Lett 68:1172–1175

    Article  CAS  Google Scholar 

  43. Janner A, Janssen T (2015) Phys Scr 90:088007 (23 pp)

    Article  Google Scholar 

  44. Grimm U (2015) Acta Cryst B71:258–274

    Google Scholar 

  45. Pinheiro CB, Abakumov AM (2015) IUCrJ 2:137–154

    Article  CAS  Google Scholar 

  46. Glotzer SC, Engel M (2011) Nature 471:309–310

    Article  CAS  Google Scholar 

  47. Baake M, Grimm U, Scheffer M (2002) J Alloy Compd 342:195–197

    Article  CAS  Google Scholar 

  48. Janner A (2002) Struct Chem 13:277–287

    Article  CAS  Google Scholar 

  49. Mikhael J, Schmiedeberg M, Rausch S, Roth J, Stark H, Bechinger C (2010) Proc Natl Acad Sci 107:7214–7218

    Article  CAS  Google Scholar 

  50. Edagawa K (2014) Sci Technol Adv Mater 15:034805 (15 pp)

    Article  Google Scholar 

  51. Poddubny AN, Ivchenko EL (2010) Phys E 42:1871–1895

    Article  CAS  Google Scholar 

  52. Ungar G, Zeng X (2005) Soft Matter 1:95–106

    Article  CAS  Google Scholar 

  53. Dotera T (2011) Isr J Chem 51:1197–1205

    Article  CAS  Google Scholar 

  54. Kabai S (2009) In: Pegg E, Schoen AH, Rodgers T (eds) Homage to a pied puzzler. AK Peters Ltd, Natick, pp 53–73

    Chapter  Google Scholar 

  55. Macia E (2006) Rep Prog Phys 69:397–441

    Article  Google Scholar 

  56. Darvas G (2015) Symmetry Cult Sci 26:39–82

    Google Scholar 

  57. Ajlouni RAA (2012) Acta Cryst A 68:235–243

    Article  Google Scholar 

Download references

Acknowledgments

I thank Jelena R. Kambak for proofreading and writing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Madison.

Additional information

Dedicated to Professor Alan L. Mackay on the occasion of his 90th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madison, A.E. Tiling approach for the description of the sevenfold symmetry in quasicrystals. Struct Chem 28, 57–62 (2017). https://doi.org/10.1007/s11224-016-0793-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0793-y

Keywords

Navigation