Skip to main content
Log in

Theoretical investigation on the kinetics and thermochemisty of H-atom abstraction reactions of 2-chloroethyl methyl ether (CH3OCH2CH2Cl) with OH radical at 298 K

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Kinetics and thermochemistry of the H-atom abstraction reaction of CH3OCH2CH2Cl with OH radical have been carried out using dual level of methods. Initially, geometry optimization and frequency calculations are performed at M06-2X/6-31+G(d, p) level of theory, and energetic calculations are further refined using CCSD(T)/6-311++G(d, p) level of theory in order to characterized all stationary points on potential energy surface (PES). The result shows that H-atom abstraction from –OCH2 site of CH3OCH2CH2Cl is dominant path. The rate constants are calculated using canonical transition state theory at 298 K, which are found to be in good agreement with the experimental data. We have presented the standard enthalpies of formation for CH3OCH2CH2Cl and the radicals generated during the H-atom abstraction using group-balanced isodesmic reactions scheme. The atmospheric lifetime of title molecule is also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Atkinson R, Arey J (2003) Chem Rev 103:4605–4638

    Article  CAS  Google Scholar 

  2. Mellouki A, Le Bras G, Sidebottom H (2003) Chem Rev 103:5077–5096

    Article  CAS  Google Scholar 

  3. McClay K, Schaefer CE, Vainberg S, Steffan RJ (2007) Appl Environ Microbiol 73:6870–6875

    Article  CAS  Google Scholar 

  4. Coe PL, Rowbotham RA, Tatlow JC (1997) J Fluorine Chem 82:9–12

    Article  CAS  Google Scholar 

  5. Sekiya A, Misaki S (2000) J Fluorine Chem 101:215–221

    Article  CAS  Google Scholar 

  6. Dalmasso PR, Taccone RA, Nieto JD, Cometto PM, Lane SI (2008) J Phys Org Chem 21:393–396

    Article  CAS  Google Scholar 

  7. Dalmasso PR, Taccone RA, Nieto JD, Cometto PM, Lane SI (2005) Int J Chem Kinet 37:420–426

    Article  CAS  Google Scholar 

  8. Dalmasso PR, Taccone RA, Nieto JD, Cometto PM, Lane SI (2010) Atmos Environ 44:1749–1753

    Article  CAS  Google Scholar 

  9. Dalmasso PR, Taccone RA, Nieto JD, Cometto PM, Lane SI (2012) Atmos Environ 47:104–110

    Article  CAS  Google Scholar 

  10. Mishra BK, Chakrabartty AK, Deka RC (2014) Mol Phys 112(11):1512–1519

    Article  CAS  Google Scholar 

  11. Mishra BK, Chakrabartty AK, Bhattacharjee D, Deka RC (2014) Struct Chem 24:1621–1626

    Article  Google Scholar 

  12. Hu WP, Truhlar DG (1996) J Am Chem Soc 118:860–869

    Article  CAS  Google Scholar 

  13. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem A 100:12771–12800

    Article  CAS  Google Scholar 

  14. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  15. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  16. Lily M, Mishra BK, Chandra AK (2014) J Fluorine Chem 161:51–59

    Article  CAS  Google Scholar 

  17. Dinadayalane TC, Paytakov G, Leszczynski J (2013) J Mol Model 19:2855–2864

    Article  CAS  Google Scholar 

  18. Deka RC, Mishra BK (2014) J Mol Graph Model 53:23–30

    Article  CAS  Google Scholar 

  19. Sandhiya L, Kolandaivel P, Senthilkumar K (2012) Struct Chem 23:1475–1488

    Article  CAS  Google Scholar 

  20. Gour NK, Deka RC, Singh HJ, Mishra BK (2014) J Fluorine Chem 160:64–71

    Article  CAS  Google Scholar 

  21. Gonzales C, Schlegel HB (1991) J Chem Phys 95:5853–5860

    Article  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V,Mennucci B, Petersson GA, Nakatsuji H, CaricatoM, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, EharaM, ToyotaK, FukudaR, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell K, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian Inc., Wallingford

  23. Laidler KJ (2004) Chemical kinetics, 3rd edn. Pearson Education, New Delhi

    Google Scholar 

  24. Johnston HS, Heicklen JJ (1962) J Phys Chem 66:532–533

    Article  Google Scholar 

  25. Xiao R, Noerpel M, Luk HL, Wei Z, Spinney R (2014) Int J Quantum Chem 114:74–83

    Article  CAS  Google Scholar 

  26. Atkins P, de Paula J (2010) Physical chemistry, 9th edn. Oxford University Press, New York

    Google Scholar 

  27. Truhlar DG, Chuang YY (2000) J Chem Phys 112:1221–1228

    Article  Google Scholar 

  28. Hammond GS (1955) J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  29. Dalmasso PR, Taccone RA, Nieto JD, Cometto PM, Cobos CJ, Lane SI (2014) Atmos Environ 91:104–109

    Article  CAS  Google Scholar 

  30. Chase MW Jr (1989) NIST-JANAF thermochemical tables, 4th edn. J Phys Chem Ref Data Monograph No. 9. ACS & AIP, New York

  31. Csontos J, Rolik Z, Das S, Kallay M (2010) J Phys Chem A 114:13093–13103

    Article  CAS  Google Scholar 

  32. Pilcher G, Pell AS, Coleman D (1964) J Trans Faraday Soc 60:499–505

    Article  CAS  Google Scholar 

  33. Lide DR (2009) CRC handbook of chemistry and physics, 89th edn. CRC Press, New York

    Google Scholar 

  34. Papadimitriou VC, Kambanis KG, Lazarou YG, Papagiannakopoulos P (2004) J Phys Chem A 108:2666–2674

    Article  CAS  Google Scholar 

  35. Atkinson R (1997) J Phys Chem Ref Data 26:215–290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

NKG is thankful to University Grants Commission (UGC), New Delhi, for providing Dr. D. S. Kothari Postdoctoral Fellowship (Award Letter No: F.4-2/2006(BSR)/CH/14-15/0217). One of the authors IH thanks University Grants Commission for providing the “Maulana Azad National Fellowship” F1-17.1/2013-14/MANF-2013-14-MUS-ASS-25447. The authors also acknowledge financial support from the Department of Science and Technology, New Delhi, in the form of a Project [SR/NM.NS-1023/2011(G)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chandra Deka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gour, N.K., Mishra, B.K., Hussain, I. et al. Theoretical investigation on the kinetics and thermochemisty of H-atom abstraction reactions of 2-chloroethyl methyl ether (CH3OCH2CH2Cl) with OH radical at 298 K. Struct Chem 27, 1491–1499 (2016). https://doi.org/10.1007/s11224-016-0771-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0771-4

Keywords

Navigation