Skip to main content

Advertisement

Log in

Computational identification of novel piperidine derivatives as potential HDM2 inhibitors designed by fragment-based QSAR, molecular docking and molecular dynamics simulations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Tumor suppressor protein p53 maintains integrity of genome and regulates the genes responsible for DNA repair mechanism, apoptosis as well as cell cycle and growth arrest. As with murine double minute 2 (MDM2), the human homolog HDM2 is a principal cellular antagonist of p53. In unstressed cells, cellular levels of p53 and HDM2 are maintained in an autoregulatory manner in which both mutually control cellular levels of each other. About half of the human cancers express wild-type p53 protein that is antagonized by over-expressed HDM2. Restoring p53 function via HDM2 antagonists is a leading therapeutic approach for treating a variety of tumors. In this study, we have developed a novel statistically sound group-based QSAR (GQSAR) model using piperidine-derived compounds that have been validated experimentally to inhibit p53–HDM2 interaction. On the basis of developed GQSAR model, a combinatorial library of molecules was prepared and its activity was predicted. These molecules were then docked to HDM2, and two top-scoring molecules possessing a binding energy of −6.639 and −6.305 kcal/mol were selected for further study. These molecules and their binding poses were analyzed further via molecular dynamic simulations. In this study, we report two lead compounds as potent HDM2 inhibitors and also provide an insight into mechanism of interaction of the lead compounds to HDM2 target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boyle P, Levin B (2008) World cancer report 2008. IARC Press, Intl Agency Res Cancer, Lyon

    Google Scholar 

  2. Cancer IAfRo (2012) World cancer fact sheet. World Health Organization, Geneva

    Google Scholar 

  3. Wade M, Li Y-C, Wahl GM (2013) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13(2):83–96

    Article  CAS  Google Scholar 

  4. Manfredi JJ (2010) The Mdm2–p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 24(15):1580–1589

    Article  CAS  Google Scholar 

  5. Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, Bourougaa K, Calvo F, Fåhraeus R (2008) P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 10(9):1098–1105

    Article  CAS  Google Scholar 

  6. Goyal S, Grover S, Dhanjal JK, Tyagi C, Goyal M, Grover A (2014) Group-based QSAR and molecular dynamics mechanistic analysis revealing the mode of action of novel piperidinone derived protein–protein inhibitors of p53–MDM2. J Mol Graph Model 51:64–72

    Article  CAS  Google Scholar 

  7. Kruse J-P, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622

    Article  CAS  Google Scholar 

  8. Marine J-C, Lozano G (2010) Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ 17(1):93–102

    Article  CAS  Google Scholar 

  9. Wade M, Wang YV, Wahl GM (2010) The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 20(5):299–309

    Article  CAS  Google Scholar 

  10. Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design—a review. Curr Topics Med Chem 10(1):95–115

    Article  CAS  Google Scholar 

  11. Ajmani S, Jadhav K, Kulkarni SA (2009) Group-based QSAR (G-QSAR): mitigating interpretation challenges in QSAR. QSAR Comb Sci 28(1):36–51

    Article  CAS  Google Scholar 

  12. Deshpande SK (2008) Molecule fragmentation scheme and method for designing new molecules. Google Patents

  13. Wang F, Li Y, Ma Z, Wang X, Wang Y (2012) Structural determinants of benzodiazepinedione/peptide-based p53–HDM2 inhibitors using 3D-QSAR, docking and molecular dynamics. J Mol Model 18(1):295–306

    Article  Google Scholar 

  14. Ding K, Lu Y, Nikolovska-Coleska Z, Qiu S, Ding Y, Gao W, Stuckey J, Krajewski K, Roller PP, Tomita Y (2005) Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 127(29):10130–10131

    Article  CAS  Google Scholar 

  15. Lu Y, Nikolovska-Coleska Z, Fang X, Gao W, Shangary S, Qiu S, Qin D, Wang S (2006) Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)–p53 interaction through an integrated, virtual database screening strategy. J Med Chem 49(13):3759–3762

    Article  CAS  Google Scholar 

  16. Parks DJ, LaFrance LV, Calvo RR, Milkiewicz KL, Gupta V, Lattanze J, Ramachandren K, Carver TE, Petrella EC, Cummings MD (2005) 1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2–p53 interaction: discovery and SAR. Bioorg Med Chem Lett 15(3):765–770

    Article  CAS  Google Scholar 

  17. Vassilev LT (2004) Small-molecule antagonists of p53–MDM2 binding: research tools and potential therapeutics. Cell Cycle 3(4):417–419

    Article  Google Scholar 

  18. LaRusch GA, Jackson MW, Dunbar JD, Warren RS, Donner DB, Mayo LD (2007) Nutlin3 blocks vascular endothelial growth factor induction by preventing the interaction between hypoxia inducible factor 1α and Hdm2. Cancer Res 67(2):450–454

    Article  CAS  Google Scholar 

  19. Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H, Zhao X, Vu BT, Qing W, Packman K (2006) Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 103(6):1888–1893

    Article  CAS  Google Scholar 

  20. Chen L, Yin H, Farooqi B, Sebti S, Hamilton AD, Chen J (2005) p53 α-Helix mimetics antagonize p53/MDM2 interaction and activate p53. Mol Cancer Therap 4(6):1019–1025

    Article  CAS  Google Scholar 

  21. Stoll R, Renner C, Hansen S, Palme S, Klein C, Belling A, Zeslawski W, Kamionka M, Rehm T, Mühlhahn P (2001) Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochem 40(2):336–344

    Article  CAS  Google Scholar 

  22. Zhao J, Wang M, Chen J, Luo A, Wang X, Wu M, Yin D, Liu Z (2002) The initial evaluation of non-peptidic small-molecule HDM2 inhibitors based on p53–HDM2 complex structure. Cancer Lett 183(1):69–77

    Article  CAS  Google Scholar 

  23. Luke R, Hudson K, Hayward C, Fielding C, Cotton R, Best R, Giles M, Veldma M, Griffiths L, Breeze A (1999) Design and synthesis of small molecule inhibitors of the MDM2–p53 interaction as potential anti-tumor agents. In Proc Am Assoc Cancer Res, p 4099

  24. Pan W, Lahue BR, Ma Y, Nair LG, Shipps GW, Wang Y, Doll R, Bogen SL (2014) Core modification of substituted piperidines as Novel inhibitors of HDM2–p53 protein–protein interaction. Bioorg Med Chem Lett 24(8):1983–1986

    Article  CAS  Google Scholar 

  25. Hardcastle IR, Ahmed SU, Atkins H, Farnie G, Golding BT, Griffin RJ, Guyenne S, Hutton C, Källblad P, Kemp SJ (2006) Small-molecule inhibitors of the MDM2–p53 protein–protein interaction based on an isoindolinone scaffold. J Med Chem 49(21):6209–6221

    Article  CAS  Google Scholar 

  26. Dai Y, Chen N, Wang Q, Zheng H, Zhang X, Jia S, Dong L, Feng D (2012) Docking analysis and multidimensional hybrid QSAR model of 1,4-benzodiazepine-2,5-diones as HDM2 antagonists. Iran J Pharm Res (IJPR) 11(3):807

    CAS  Google Scholar 

  27. Mondal C, Halder AK, Adhikari N, Saha A, Saha KD, Gayen S, Jha T (2015) Comparative validated molecular modeling of p53–HDM2 inhibitors as antiproliferative agents. Eur J Med Chem 90:860–875

    Article  CAS  Google Scholar 

  28. Dong X, Yan J, Lu D, Wu P, Gao J, Liu T, Yang B, Hu Y (2012) QSAR models for isoindolinone-based p53–MDM2 interaction inhibitors using linear and non-linear statistical methods. Chem Biol Drug Des 79(5):691–702

    Article  CAS  Google Scholar 

  29. Hu C, Dou X, Wu Y, Zhang L, Hu Y (2012) Design, synthesis and CoMFA studies of N1-amino acid substituted 2,4,5-triphenyl imidazoline derivatives as p53–MDM2 binding inhibitors. Bioorg Med Chem 20(4):1417–1424

    Article  CAS  Google Scholar 

  30. Bo L, Rui Z, Gu H, Li G, Wei H (2013) Molecular docking, QSAR and molecular dynamics simulation on spiro-oxindoles as MDM2 inhibitors. Acta Chim Sin 71(10):1396–1403

    Article  Google Scholar 

  31. Hu C, Hu Y (2012) 3D-QSAR studies on isoquinolinone derivatives as inhibitors of p53–MDM2 Binding. 2012 长三角药物化学研讨会论文集

  32. Ma Y, Lahue BR, Shipps GW, Brookes J, Wang Y (2014) Substituted piperidines as HDM2 inhibitors. Bioorg Med Chem Lett 24(4):1026–1030

    Article  CAS  Google Scholar 

  33. Tyagi C, Gupta A, Goyal S, Dhanjal JK, Grover A (2014) Fragment based group QSAR and molecular dynamics mechanistic studies on arylthioindole derivatives targeting the α-β interfacial site of human tubulin. BMC Genom 15(Suppl 9):S3

    Article  Google Scholar 

  34. Csizmadia P (1999) MarvinSketch and MarvinView: molecule applets for the World Wide Web. In: Proceedings of ECSOC-3, the third international electronic conference on synthetic organic chemistry, 1–30 Sept 1999, pp 367–369

  35. Vlife M (2008) Software package, version 3.0, supplied by Vlifescience technologies Pvt. Ltd, Pune

  36. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58(2):109–130

    Article  CAS  Google Scholar 

  37. Goyal S, Dhanjal JK, Tyagi C, Goyal M, Grover A (2014) Novel fragment-based QSAR modeling and combinatorial design of pyrazole-derived CRK3 inhibitors as potent antileishmanials. Chem Biol Drug Des 84(1):54–62

    Article  CAS  Google Scholar 

  38. Dhanjal JK, Goyal S, Sharma S, Hamid R, Grover A (2014) Mechanistic insights into mode of action of potent natural antagonists of BACE-1 for checking Alzheimer’s plaque pathology. Biochem Biophys Res Commun 443(3):1054–1059

    Article  CAS  Google Scholar 

  39. Vats C, Dhanjal JK, Goyal S, Bharadvaja N, Grover A (2014) Computational design of novel flavonoid analogues as potential AChE inhibitors: analysis using group-based QSAR, molecular docking and molecular dynamics simulations. Struct Chem 26(2):1–10

    Google Scholar 

  40. Patel K, Tyagi C, Goyal S, Dhanjal JK, Bharadvaja N, Grover A (2014) Curcumin-based IKKβ inhibiting anticancer lead design using novel fragment-based group QSAR modelling. Med Chem Res 24(5):1–11

    Google Scholar 

  41. Rücker C, Rücker G, Meringer M (2007) y-Randomization and its variants in QSPR/QSAR. J Chem Inf Model 47(6):2345–2357

    Article  Google Scholar 

  42. Rücker C, Rücker G, Meringer M (2007) Y-Randomization—a useful tool in QSAR validation, or folklore? J Chem Inf Model 47(6):2345–2357

    Article  Google Scholar 

  43. Fasan R, Dias RL, Moehle K, Zerbe O, Obrecht D, Mittl PR, Grütter MG, Robinson JA (2006) Structure-activity studies in a family of β-hairpin protein epitope mimetic inhibitors of the p53–HDM2 protein–protein interaction. ChemBioChem 7(3):515–526

    Article  CAS  Google Scholar 

  44. Schrödinger L (2009) Schrödinger suite 2009. Maestro version 9. New York, NY

  45. Grover S, Dhanjal JK, Goyal S, Grover A, Sundar D (2014) Computational identification of novel natural inhibitors of glucagon receptor for checking type II diabetes mellitus. BMC Bioinf 15(Suppl 16):S13

    Article  Google Scholar 

  46. Dhanjal JK, Grover S, Paruthi P, Sharma S, Grover A (2014) Mechanistic insights into mode of action of a potent natural antagonist of orexin receptor-1 by means of high throughput screening and molecular dynamics simulations. Comb Chem High Throughput Screen 17(2):124–131

    Article  CAS  Google Scholar 

  47. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234

    Article  Google Scholar 

  48. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49(21):6177–6196

    Article  CAS  Google Scholar 

  49. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6(5):1509–1519

    Article  CAS  Google Scholar 

  50. Wildman SA, Crippen GM (1999) Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci 39(5):868–873

    Article  CAS  Google Scholar 

  51. Jhala DD, Chettiar SS, Singh JK (2012) Optimization and validation of an in vitro blood brain barrier permeability assay using artificial lipid membrane. J Bioequiv Availab S14:009. doi:10.4172/jbb.S14-009

  52. Gonzalez AZ, Li Z, Beck HP, Canon J, Chen A, Chow D, Duquette J, Eksterowicz J, Fox BM, Fu J (2014) Novel inhibitors of the MDM2–p53 interaction featuring hydrogen bond acceptors as carboxylic acid isosteres. J Med Chem 57(7):2963–2988

    Article  CAS  Google Scholar 

  53. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52(11):3099–3105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AG is thankful to Jawaharlal Nehru University for usage of all computational facilities. AG is grateful to University Grants Commission, India, for the Faculty Recharge Position.

Authors’ contributions

AS, SG, SJ and AG designed the methods and experimental setup. AS, SG and SJ carried out the implementation of various methods and were assisted by BS, MD and NA. AS, SG, SJ and AG wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Grover.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 672 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Goyal, S., Jamal, S. et al. Computational identification of novel piperidine derivatives as potential HDM2 inhibitors designed by fragment-based QSAR, molecular docking and molecular dynamics simulations. Struct Chem 27, 993–1003 (2016). https://doi.org/10.1007/s11224-015-0697-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0697-2

Keywords

Navigation