Skip to main content
Log in

Edge modification of PAHs: the effect of embedded heterocycles on the aromaticity pattern

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The NICS(1) values of the dibenzo[fg,ij]pentaphene system with embedded heteroatoms in the five-membered ring were calculated to explore the effect of the different heteroelements on the local aromaticities of the eight constituting rings. The calculated NICS(1) values in general are in accordance with Clar’s rule, while the local aromaticity in the five-membered ring correlates with that in the isolated rings. The NICS(1) aromaticities of the embedded six-membered ring span a nearly 10 ppm range with the variation of the heteroelement, correlating with the aromaticity of the neighbouring five-membered ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu J, Pisula W, Müllen K (2007) Chem Rev 107:718–747

    Article  CAS  Google Scholar 

  2. Rocke AJ (2014) Angew Chem Int Ed Engl 54:46–50

    Article  Google Scholar 

  3. von Schleyer PR (2001) Chem Rev 101:1115–1118

    Article  CAS  Google Scholar 

  4. von Schleyer PR (2005) Chem Rev 105:3433–3435

    Article  CAS  Google Scholar 

  5. Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M (2014) Chem Rev 114:6383–6422

    Article  CAS  Google Scholar 

  6. Wassmann T, Seitsonen A, Saitta A, Lazzeri M, Mauri F (2008) Phys Rev Lett 101:096402

    Article  Google Scholar 

  7. Kertesz M, Choi CH, Yang S (2005) Chem Rev 105:3448–3481

    Article  CAS  Google Scholar 

  8. Garcia-Borràs M, Osuna S, Luis JM, Swart M, Solà M (2014) Chem Soc Rev 43:5089–5105

    Article  Google Scholar 

  9. Osuna S, Torrent-Sucarrat M, Ewels CP, Solà M, Geerlings P, Van Lier G (2009) J Nanosci Nanotechnol 9:6078–6083

    Article  CAS  Google Scholar 

  10. Solà M (2013) Front Chem 1:22

    Article  Google Scholar 

  11. Matsuo Y, Tahara K, Nakamura E (2003) Org Lett 5:3181–3184

    Article  CAS  Google Scholar 

  12. Martín-Martínez FJ, Fias S, Van Lier G, De Proft F, Geerlings P (2012) Chemistry 18:6183–6194

    Article  Google Scholar 

  13. Shimizu A, Hirao Y, Kubo T, Nakano M, Botek E, Champagne B (2012) In: International conference on computational methods in science and engineering 2009 (ICCMSE 2009). AIP Publishing, pp 399–405

  14. Konishi A, Hirao Y, Nakano M, Shimizu A, Botek E, Champagne B, Shiomi D, Sato K, Takui T, Matsumoto K, Kurata H, Kubo T (2010) J Am Chem Soc 132:11021–11023

    Article  CAS  Google Scholar 

  15. Draper SM, Gregg DJ, Madathil R (2002) J Am Chem Soc 124:3486–3487

    Article  CAS  Google Scholar 

  16. Wu D, Pisula W, Haberecht MC, Feng X, Müllen K (2009) Org Lett 11:5686–5689

    Article  CAS  Google Scholar 

  17. Davis NKS, Thompson AL, Anderson HL (2011) J Am Chem Soc 133:30–31

    Article  CAS  Google Scholar 

  18. Dou C, Saito S, Matsuo K, Hisaki I, Yamaguchi S (2012) Angew Chem Int Ed Engl 51:12206–12210

    Article  CAS  Google Scholar 

  19. Escande A, Ingleson MJ (2015) Chem Commun (Camb) 51:6257–6274

    Article  CAS  Google Scholar 

  20. Dral PO, Kivala M, Clark T (2013) J Org Chem 78:1894–1902

    Article  CAS  Google Scholar 

  21. Nyulászi L (2001) Chem Rev 101:1229–1246

    Article  Google Scholar 

  22. Benkő Z, Nyulászi L (2009) Top Heterocycl Chem 19:27–83

    Article  Google Scholar 

  23. Nyulászi L, Hollóczki O, Lescop C, Hissler M, Réau R (2006) Org Biomol Chem 4:996–998

    Article  Google Scholar 

  24. Bouit P-A, Escande A, Szűcs R, Szieberth D, Lescop C, Nyulászi L, Hissler M, Réau R (2012) J Am Chem Soc 134:6524–6527

    Article  CAS  Google Scholar 

  25. Riobé F, Szűcs R, Bouit P-A, Tondelier D, Geffroy B, Aparicio F, Buendía J, Sánchez L, Réau R, Nyulászi L, Hissler M (2015) Chem A Eur J 21:6547–6556

    Article  Google Scholar 

  26. von Schleyer PR, Maerker C, Dransfeld A, Jiao H, van Hommes NJRE (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  27. von Schleyer PR, Jiao H, van Hommes NJRE, Malkin VG, Malkina OL (1997) J Am Chem Soc 119:12669–12670

    Article  CAS  Google Scholar 

  28. Plasser F, Pašalić H, Gerzabek MH, Libisch F, Reiter R, Burgdörfer J, Müller T, Shepard R, Lischka H (2013) Angew Chem Int Ed Engl 52:2581–2584

    Article  CAS  Google Scholar 

  29. Nyulászi L, von Schleyer PR (1999) J Am Chem Soc 121:6872–6875

    Article  Google Scholar 

  30. Katritzky AR, Barczynski P, Musumarra G, Pisano D, Szafran M (1989) J Am Chem Soc 111:7–15

    Article  CAS  Google Scholar 

  31. Katritzky AR, Feygelman V, Musumarra G, Barczynski P, Szafran M (1990) J für Prakt Chemie 332:853–869

    Article  CAS  Google Scholar 

  32. Katritzky AR, Feygelman V, Musumarra G, Barczynski P, Szafran M (1990) J für Prakt Chemie 332:870–884

    Article  CAS  Google Scholar 

  33. Katritzky AR, Barczynski P (1990) J für Prakt Chemie 332:885–897

    Article  CAS  Google Scholar 

  34. Katritzky AR, Szafran M, Anders E, Malhotra N, Chaudry SU (1990) Tetrahedron Comput Methodol 3:247–269

    Article  CAS  Google Scholar 

  35. Katritzky AR, Karelson M, Wells AP (1996) J Org Chem 61:1619–1623

    Article  CAS  Google Scholar 

  36. Katritzky AR, Karelson M, Sild S, Krygowski TM, Jug K (1998) J Org Chem 63:5228–5231

    Article  CAS  Google Scholar 

  37. Cyrañski MK, Krygowski TM, Katritzky AR, von Schleyer PR (2002) J Org Chem 67:1333–1338

    Article  Google Scholar 

  38. Poater J, Fradera X, Duran M, Solà M (2003) Chem A Eur J 9:1113–1122

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B. 01. Gaussian Inc., Wallingford

    Google Scholar 

  40. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  42. Hollóczki O, Nyulászi L (2011) Struct Chem 22:1385–1392

    Article  Google Scholar 

  43. Moran D, Stahl F, Bettinger HF, Schaefer HF, von Schleyer PR (2003) J Am Chem Soc 125:6746–6752

    Article  CAS  Google Scholar 

  44. Chen Z, Wannere CS, Corminboeuf C, Puchta R, von Schleyer PR (2005) Chem Rev 105:3842–3888

    Article  CAS  Google Scholar 

  45. Bird CW (1985) Tetrahedron 41:1409–1414

    Article  CAS  Google Scholar 

  46. Bird CW (1986) Tetrahedron 42:89–92

    Article  CAS  Google Scholar 

  47. Bird CW (1987) Tetrahedron 43:4725–4730

    Article  CAS  Google Scholar 

  48. Bird CW (1992) Tetrahedron 48:335–340

    Article  CAS  Google Scholar 

  49. Gordy W (1947) J Chem Phys 15:305–310

    Article  CAS  Google Scholar 

  50. Nyulászi L, Várnai P, Veszprémi T (1995) J Mol Struct THEOCHEM 358:55–61

    Article  Google Scholar 

  51. Bultinck P, Ponec R, Van Damme S (2005) J Phys Org Chem 18:706

    Article  CAS  Google Scholar 

  52. Fias S, van Damme S, Bultinck P (2008) J Comput Chem 29:358–366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Balaton PHC (830386K)—TÉT_12_FR-1-2013-0017; OTKA NN 113772; Campus France; TAMOP-4.2.1/B-09/1/KMR-2010-0002; and COST-STSM-CM1302 (SIPS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muriel Hissler or László Nyulászi.

Additional information

Dedicated to Professor Magdolna Hargittai on the occasion of her 70th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szűcs, R., Bouit, PA., Hissler, M. et al. Edge modification of PAHs: the effect of embedded heterocycles on the aromaticity pattern. Struct Chem 26, 1351–1357 (2015). https://doi.org/10.1007/s11224-015-0665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0665-x

Keywords

Navigation