Skip to main content
Log in

Equilibrium molecular structure of benzamide from gas-phase electron diffraction and theoretical calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The molecule structure of benzamide has been determined in the gas phase by electron diffraction using results from quantum chemical calculations for constraints in the analysis. The root-mean-square amplitudes of vibration and harmonic shrinkage corrections were calculated taking into account nonlinear relations between Cartesian and internal vibrational coordinates at the level of first-order perturbation theory. The corresponding r h1 structure agrees well with the results of B3LYP/cc-pVTZ calculations. To take into account vibrational effects, the corrections to the experimental r a bond lengths, the values of the differences r e − r a were obtained using quadratic and cubic force constants from ab initio calculations at the MP2/cc-pVTZ level of theory). The equilibrium structure from the experiment agrees well with the results of the ab initio calculations. The following structural parameters were obtained (bond lengths in Angstroms and bond angles in degrees with 3σ in parentheses): r(C=C)av = 1.392(1), r(C–C) = 1.502(4), r(C–N) = 1.367(1), r(C=O) = 1.224(3), r(C–H) = 1.084(4), ∠C6C1C2 = 119.8, ∠CCN = 116.8(10), ∠CCO = 120.8(11), ∠C2C1C7O = 18.4(27). The C=O bond is shorter by 0.02 Å, and the C–N bond is longer by 0.03 Å than the corresponding bonds in the crystal. These differences are ascribed to the effect of intermolecular hydrogen bonding on the structure in the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Manzanares J (1992) Arch Pharm 325:83–87

    Article  Google Scholar 

  2. Wang P-J, Guo H-R (2004) J Headache Pain 5:30–35

    Article  CAS  Google Scholar 

  3. Wu YL, Shen LW, Ding YP, Tanaka Y, Zhang W (2014) Adv Mater Res 997:225–228

    Article  CAS  Google Scholar 

  4. Ludwig A, Dietel M, SchAfer G, Muller K, Hilz H (1990) Cancer Res 50:2470–2475

    CAS  Google Scholar 

  5. Del Pino BM (2010) Natl Cancer Inst Cancer Bull 7:6

    Google Scholar 

  6. Brodie RR, Chasseaud LF, Darragh A, Lambe RF, Rooney L, Taylor T (1986) Biopharm Drug Dispos 7:215–222

    Article  CAS  Google Scholar 

  7. Sasada Y, Takano T, Kakudo M (1964) Bull Chem Soc Jpn 37:940–946

    Article  CAS  Google Scholar 

  8. Pertlik F (1990) Monatsh Chem 121:129–139

    Article  CAS  Google Scholar 

  9. Anandan K, Kolandaivel P, Kumaresan R (2005) Int J Quantum Chem 104:286–298

    Article  CAS  Google Scholar 

  10. Palomar J, de Paz JLG, Catalan J (2000) J Phys Chem A 104:6453–6463

    Article  CAS  Google Scholar 

  11. Velcheva EA, Stamboliyska BA (2008) J Mol Struct 875:264–271

    Article  CAS  Google Scholar 

  12. Aarset K, Page EM, Rice DA (2013) J Phys Chem A 117:3034–3040

    Article  CAS  Google Scholar 

  13. Moribe K, Tsuchiya M, Tozuka Y, Yamaguchi K, Oguchi T, Yamamoto K (2006) J Incl Phenom Macrocycl Chem 54:9–16

    Article  CAS  Google Scholar 

  14. Lampert H, Mikenda W, Karpfen A (1996) J Phys Chem 100:7418–7425

    Article  CAS  Google Scholar 

  15. Jezierska A, Panek JJ, Mazzarello R (2009) Theor Chem Acc 124:319–330

    Article  CAS  Google Scholar 

  16. Krishnakumar V, Murugeswari K, Surumbarkuzhali N (2013) Spectrochim Acta A 114:410–420

    Article  CAS  Google Scholar 

  17. Bakiler M, Bolukbasi O, Yilmaz A (2007) J Mol Struct 826:6–16

    Article  CAS  Google Scholar 

  18. Velcheva EA, Daskalova LI (2005) J Mol Struct 741:85–92

    Article  CAS  Google Scholar 

  19. Miwa Y, Mizuno T, Tsuchiya K, Taga T, Iwata Y (1999) Acta Crystallogr Sect B-Struct Sci 55:78–84

    Article  Google Scholar 

  20. Wright B, King GSD (1954) Acta Crystallogr 7:283–288

    Article  CAS  Google Scholar 

  21. Takeshima T, Takeuchi H, Egawa T, Konaka S (2003) J Mol Struct 644:197–205

    Article  CAS  Google Scholar 

  22. Penfold BR, White JCB (1959) Acta Crystallogr 12:130–135

    Article  CAS  Google Scholar 

  23. Blake CCF, Small RWH (1972) Acta Crystallogr Sect B-Struct Sci 28:2201–2206

    Article  CAS  Google Scholar 

  24. Gao Q, Jeffrey GA, Ruble JR, McMullan RK (1991) Acta Crystallogr Sect B-Struct Sci 47:742–745

    Article  Google Scholar 

  25. Takeuchi H, Sato M, Tsuji T, Takashima H, Egawa T, Konaka S (1999) J Mol Struct 485(486):175–181

    Article  Google Scholar 

  26. Sipachev VA (2000) Struct Chem 11:167–172

    Article  CAS  Google Scholar 

  27. Khaikin LS, Grikina OE, Sipachev VA, Belyakov AV, Bogoradovskii ET, Kolonits M (2000) J Mol Struct 523:23–37

    Article  CAS  Google Scholar 

  28. Khaikin LS, Grikina OE, Sipachev VA, Nikitin VS, Tratteberg M (2000) J Mol Struct 523:1–22

    Article  Google Scholar 

  29. Khaikin LS, Grikina OE, Sipachev VA, Traetteberg M (2001) J Mol Struct 567:85–99

    Article  Google Scholar 

  30. Hargittai M, Hargittai I (1992) Int J Quantum Chem 44:1057–1067

    Article  CAS  Google Scholar 

  31. Sipachev VA (2004) J Mol Struct 693:235–240

    Article  CAS  Google Scholar 

  32. Vogt N, Khaikin LS, Grikina OE, Rykov AN (2013) J Mol Struct 1050:114–121

    Article  CAS  Google Scholar 

  33. Hargittai I, Tremmel J, Kolonits M (1980) Hung Sci Instrum 50:31–42

    CAS  Google Scholar 

  34. Tremmel J, Hargittai I (1985) J Phys E Sci Instrum 18:145–148

    Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc, Wallingford, CT

  36. Becke AD (1988) Phys Rev A 38(6):3000–3098

    Article  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  38. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  39. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  40. Vishnevskiy YuV (2009) http://unexprog.org/

  41. Sipachev VA (1999) In: Hargittai M, Hargittai I (eds) Advances in molecular structure research, vol 5. JAI Greenwich, pp 263–311

  42. Iwasaki M, Hedberg K (1962) J Chem Phys 36:2961–2963

    Article  CAS  Google Scholar 

  43. Sipachev VA (2001) J Mol Struct 567(568):67–72

    Article  Google Scholar 

  44. Sipachev VA (1985) J Mol Struct (Theochem) 121:143–151

    Article  Google Scholar 

  45. Domenicano A, Vaciago A (1979) Acta Crystallogr 35:1382–1388

    Article  Google Scholar 

  46. Kitano M, Kuchitsu K (1973) Bull Chem Soc Jpn 46:3048–3051

    Article  CAS  Google Scholar 

  47. Kovács A, Hargittai I (2000) Struct Chem 11:193–200

    Article  Google Scholar 

  48. Hargittai I (2013) Struct Chem 24:735–738

    Article  CAS  Google Scholar 

  49. Portalone G, Schultz G, Domenicano A, Hargittai I (1984) J Mol Struct 118:53–61

    Article  CAS  Google Scholar 

  50. Schultz G, Portalone G, Ramondo F, Domenicano A, Hargittai I (1996) Struct Chem 7:59–71

    Article  CAS  Google Scholar 

  51. Borisenko KB, Bock CW, Hargittai I (1996) J Phys Chem 100:7426–7434

    Article  CAS  Google Scholar 

  52. Leiserowitz L, Shmid TG (1969) J Chem Soc A 2372–2382

Download references

Acknowledgments

This research was supported by the Russian Foundation for Basic Research under Grants the 11-03-00716-a and No. 12-03-91330-NNIO-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna N. Kolesnikova.

Additional information

This contribution is dedicated to Professor Magdolna Hargittai on the occasion of her anniversary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 12143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikova, I.N., Hargittai, I. & Shishkov, I.F. Equilibrium molecular structure of benzamide from gas-phase electron diffraction and theoretical calculations. Struct Chem 26, 1473–1479 (2015). https://doi.org/10.1007/s11224-015-0592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0592-x

Keywords

Navigation