Skip to main content
Log in

Atmospheric nucleation precursors catalyzed isomerization of CH2SH to CH3S: mechanisms and topological analysis

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The isomerization of CH2SH to CH3S in the absence and presence of atmospheric nucleation precursors (H2O, HCOOH, and H2SO4) has been investigated at the G3XMP2//B3LYP/6–311+G(3df,2p) level. It is shown that the barrier heights for the isomerization are 28.74, 6.45, 12.96, and 19.23 kcal mol−1, when the isomerization is performed in gas phase and with sulfuric acid, water, and formic acid as a precursor, respectively. The rate constants of the isomerization are calculated using the transition state theory with the Wigner tunneling correction over the temperature range of 298–800 K. The rate constant of sulfuric acid-catalyzed isomerization is 1.46 × 103 times at 298 K larger than that in gas phase. Sulfuric acid-catalyzed isomerization is expected to be favorable under atmospheric condition. Moreover, topology analysis has been carried out to characterize the nature of interactions in the isomerization. Enthalpies of formation (∆f H °298K ), entropies (S °298K ), and heat capacities (C p) of all the stabilized species have been calculated using CBS-QB3 method. These results can be used for atmosphere sulfur cycle modeling application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnes I, Hjorth J, Mihalopoulos N (2006) Chem Rev 106:940–975

    Article  CAS  Google Scholar 

  2. Aranda A, Mera YD, Rodríguez D, Salgado S, Martínez E (2002) Chem Phys Lett 357:471–476

    Article  CAS  Google Scholar 

  3. Cardoso DV, Ferrão LFA, Keidel Spada RF, Roberto-Neto O, Correto Machado FB (2012) Int J Quantum Chem 112:3269–3275

    Article  CAS  Google Scholar 

  4. Green M, Lown EM, Strausz OP (1984) J Am Chem Soc 106:6938–6946

    Article  CAS  Google Scholar 

  5. Vandeputte AG, Reyniers MF, Marin GB (2010) J Phys Chem A 114:10531–10549

    Article  CAS  Google Scholar 

  6. Tsai IC, Chen JP, Lin PY, Wang WC, Isaksen ISA (2010) Atmos Chem Phys 10:3693–3709

    Article  CAS  Google Scholar 

  7. Zhan PY, Pan YR, Tang YZ (2009) Chem Phys 360:53–58

    Article  CAS  Google Scholar 

  8. Li XY, Zeng YL, Ling MP, Zheng SJ (2005) Acta Chim Sinica 63:352–357

    CAS  Google Scholar 

  9. Pei KM, Li YM, Kong XL, Li HY (2003) Chin J Chem Phys 16:251–256

    CAS  Google Scholar 

  10. Wang WL, Liu Y, Wang WN, Luo Q, Li QS (2005) Acta Chim Sinica 17:1554–1560

    Google Scholar 

  11. Wang TF, Bowie JH (2012) Org Biomol Chem 10:3219–3228

    Article  CAS  Google Scholar 

  12. Jørgensen S, Jensen C, Kjaergaard HG, Anglada JM (2013) Phys Chem Chem Phys 15:5140–5150

    Article  Google Scholar 

  13. Elm J, Bilde M, Mikkelsen KV (2013) J Phys Chem A 117:6695–6701

    Article  CAS  Google Scholar 

  14. Buszek RJ, Sinha A, Francisco JS (2011) J Am Chem Soc 133:2013–2015

    Article  CAS  Google Scholar 

  15. Gonzalez J, Anglada JM, Buszek RJ (2011) J Am Chem Soc 133:3345–3353

    Article  CAS  Google Scholar 

  16. Hazra MK, Francisco JS, Sinha A (2013) J Phys Chem A 117:11704–11710

    Article  CAS  Google Scholar 

  17. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  19. Curtiss LA, Redfern PC, Raghavachari K, Pople JA (2001) J Chem Phys 114:108–117

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, J. A. Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2003) Gaussian 03, Revision C.02. Gaussian, Inc., WallingfordFrisch

  21. Duncan WT, Bell RL, Truong TN (1998) J Comput Chem 19:1039–1052

    Article  CAS  Google Scholar 

  22. Zhang SW, Truong TN (2001) VKLab version 1.0, University of Utah

  23. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822–2827

    Article  CAS  Google Scholar 

  24. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063–1079

    Article  CAS  Google Scholar 

  25. Barker JR, Ortiz F, Lawrence JMP, et al (2010) MultiWell-2010 Software

  26. Bader RFW (1994) Atoms in Molecules A Quantum Theory. Oxford University Press, New York

    Google Scholar 

  27. Gonzalez J, Torrent-Sucarrat M, Anglada JM (2010) Phys Chem Chem Phys 12:2116–2125

    Article  CAS  Google Scholar 

  28. Biswal HS, Shirhatti PR, Wategaonkar S (2009) J Phys Chem A 113:5633–5643

    Article  CAS  Google Scholar 

  29. Lu T, Chen WF (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  30. Lu T, Chen FW (2012) J Mol Graph Model 38:314–323

    Article  Google Scholar 

  31. Russell D, Johnson III (2013) NIST Standard Reference Database Number 101, Release 16a. http://cccbdb.nist.gov/Intro.asp. accessed May 20, 2014

  32. Liu Y, Wang WL, Wang WN, Su KH, Zhang Y (2008) J Mol Struct 866:46–51

    Article  CAS  Google Scholar 

  33. Nguyen VS, Orlando TM, Leszczynski J, Nguyen MT (2013) J Phys Chem A 117:2543–2555

    Article  CAS  Google Scholar 

  34. Li P, Niu WX, Gao T, Wang HY (2014) Int J Quantum Chem 114:760–768

    Article  CAS  Google Scholar 

  35. Mandal D, Bagchi S, Das AK (2012) Chem Phys Lett 551:31–37

    Article  CAS  Google Scholar 

  36. Vandeputte AG, Reyniers MF, Marin GB (2009) Theor Chem Acc 123:391–412

    Article  CAS  Google Scholar 

  37. Hahn DK, Raghu Veer KS, Ortiz JV (2010) J Phys Chem A 114:8142–8155

    Article  CAS  Google Scholar 

  38. Nagy B, Szakács P, Csontos J, Rolik Z, Tasi G, Kállay M (2011) J Phys Chem A 115:7823–7833

    Article  CAS  Google Scholar 

  39. Saebø S, Radom L, Schaefer HF III (1983) J Chem Phys 78:845–853

    Article  Google Scholar 

Download references

Acknowledgments

We thank the School of Chemistry & Chemical engineering of Shaanxi Normal University for access to the high performance computing service. This work is supported by the foundation of Shaanxi Education Department (2013JK0667), the foundation of Yan’an University (YDQ2013-16), and the foundation of College of Chemistry & Chemical engineering of Yan’an university (YDHG2014-Z04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11224_2014_489_MOESM1_ESM.doc

Supplementary material 1 (DOC 672 kb) Appendix A. Supplementary data Optimized geometries of all the species at the B3LYP/6-311+G(3df,2p) level are given in Fig. S1. The molecular graphs of the transition states and intermediates calculated using B3LYP/6-311+G(3df,2p) method are shown in Fig. S2. The zero point energies (ZPE) and electronic energies (E) of all the species are listed in Table S1. The predicted ratios of rate over the temperature range of 298~800 K are listed in Table S2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Wang, Z.X., Gao, L.J. et al. Atmospheric nucleation precursors catalyzed isomerization of CH2SH to CH3S: mechanisms and topological analysis. Struct Chem 26, 261–268 (2015). https://doi.org/10.1007/s11224-014-0489-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0489-0

Keywords

Navigation