Skip to main content
Log in

A topological pattern for understanding the structures of boranes and borane analog compounds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

For the structure interpretation and rationalization of boranes and borane analog compounds, the five C2v symmetric molecules B4H10, Al4H10, Ga4H10, Si4H6, and Ge4H6 are proposed as the structural units for the construction of the boranes and borane analog compounds Al n H 2− n , Al m H n , Ga m H n , Si 2− n , and Ge 2− n . The superiorities of the structure interpretation method can be summarized as following. Firstly, the three kinds of hydrogens, i.e., endo-, bridge-, and external-hydrogen of the boranes and borane analog compounds can be regarded as inherited from the corresponding structural units B4H10, Al4H10, and Ga4H10. Secondly, the arcuated skeleton of the boranes and borane analog compounds can be considered as originated from the dihedral angle of the corresponding structural units B4H10, Al4H10, Ga4H10, Si4H6, and Ge4H6. Thirdly, the five structural units B4H10, Al4H10, Ga4H10, Si4H6, and Ge4H6, and their iso-electronic molecule C4H6 can act as a linkage among the boranes, borane analog compounds, and hydrocarbon compounds on some extent. Fourthly, the instability of some boranes can be correlated with the structure constraint of the B4H10 structural unit within the constructed borane. All computational work is performed at B3LYP/6-311+G(D) level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Scheme 3
Scheme 4
Scheme 5
Fig. 4
Scheme 6
Fig. 5
Fig. 6
Fig. 7
Scheme 7
Fig. 8
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Fig. 9
Scheme 12
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hawthorne MF (2009) J Chem Educ 86:1131–1141

    Article  CAS  Google Scholar 

  2. Hnyk D, Rankin DW (2009) Dalton Trans 38:585–599

  3. Kiani FA, Hofmann M (2007) Dalton Trans 36:1207–1213

  4. Fox MA, Wade K (2003) Pure Appl Chem 75:1315–1325

    Article  CAS  Google Scholar 

  5. Murli C, Song Y (2009) J Phys Chem B 113:13509–13515

    Article  CAS  Google Scholar 

  6. Laszlo P (2000) Angew Chem Int Ed 39:2071–2072

    Article  CAS  Google Scholar 

  7. Maatallah M, Cherqaoui D, Jarid A, Liebman JF (2012) J Mol Model 18:3321–3328

    Article  CAS  Google Scholar 

  8. Fracchia F, Bressanini D, Morosi G (2011) J Chem Phys 135:94503

    Article  Google Scholar 

  9. Liao R (2012) Struct Chem 23:525–527

    Article  CAS  Google Scholar 

  10. Wade K (1971) Chem Commun 7:792–793

  11. Welch AJ (2013) Chem Commun 49:3615–3616

    Article  CAS  Google Scholar 

  12. Alexandrova AN, Boldyrev AI, Zhai H-J, Wang L-S (2006) Coord Chem Rev 250:2811–2866

    Article  CAS  Google Scholar 

  13. Fehlner TP (2009) J Organomet Chem 694:1671–1677

    Article  CAS  Google Scholar 

  14. Mingos DMP (1984) Acc Chem Res 17:311–319

    Article  CAS  Google Scholar 

  15. Pantazis DA, McGrady JE, Lynam JM, Russell CA, Green M (2004) Dalton Trans 33:2080–2086

  16. Rulis P, Wang L, Ching W (2009) Phys Status Solidi RRL 3:133–135

    Article  CAS  Google Scholar 

  17. Maatallah M, Cherqaoui D, Jarid A, Liebman JF (2011) Polyhedron 30:1080–1084

    Article  CAS  Google Scholar 

  18. Gillespie R, Robinson E (2007) J Comput Chem 28:87–97

    Article  CAS  Google Scholar 

  19. Wang J, Wang G, Zhao J (2001) Phys Rev B 64:205411

    Article  Google Scholar 

  20. Lu Z-Y, Wang C-Z, Ho K-M (2000) Phys Rev B 61:2329–2334

    Article  CAS  Google Scholar 

  21. Takeuchi K, Shirahama Y, Inagaki S (2008) Inorg Chim Acta 361:355–358

    Article  CAS  Google Scholar 

  22. Castleman A, Keesee R (1988) Science 241:36–42

    Article  CAS  Google Scholar 

  23. Valeri AL, Kremser L, Raggi MA, Grüner B, Vespalec R, Kenndler E (2008) Electrophoresis 29:1658–1666

    Article  CAS  Google Scholar 

  24. King RB (2002) Collect Czech Chem Commun 67:751–768

    Article  CAS  Google Scholar 

  25. Gimarc BM, Warren DS, Ott JJ, Brown C (1991) Inorg Chem 30:1598–1605

    Article  CAS  Google Scholar 

  26. Emin D (2006) J Solid State Chem 179:2791–2798

    Article  CAS  Google Scholar 

  27. Abtew TA, Shih B-C, Dev P, Crespi VH, Zhang P (2011) Phys Rev B 83:094108

    Article  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford

  29. Liao R, Chai L, Sa R (2012) Struct Chem 23:841–845

    Article  CAS  Google Scholar 

  30. Kiani FA, Hofmann M (2006) Inorg Chem 45:6996–7003

    Article  CAS  Google Scholar 

  31. Kiani FA, Hofmann M (2006) Dalton Trans 46:5515–5520

    Article  Google Scholar 

  32. Fu L, Jin L, Shao C, Ding Y (2010) Inorg Chem 49:5276–5284

    Article  CAS  Google Scholar 

  33. Cheng M-F, Ho H-O, Lam C-S, Li W-K (2002) Chem Phys Lett 356:109–119

    Article  CAS  Google Scholar 

  34. Dudenkov I, Solntsev K (2009) Russ J Inorg Chem 54:1105–1113

    Article  Google Scholar 

  35. Lipscomb WN (1964) Inorg Chem 3:1683–1685

    Article  CAS  Google Scholar 

  36. Remmel RJ, Denton DL, Leach JB, Toft MA, Shore SG (1981) Inorg Chem 20:1270–1273

    Article  CAS  Google Scholar 

  37. Kadlecek DE, Sneddon LG (2002) Inorg Chem 41:4239–4244

    Article  CAS  Google Scholar 

  38. McKee ML (1989) J Phys Chem 93:3426–3429

    Article  CAS  Google Scholar 

  39. Shameema O, Jemmis ED (2009) Chem Asian J 4:1346–1353

    Article  CAS  Google Scholar 

  40. Wang Z-X, Schleyer PvR (2003) J Am Chem Soc 125:10484–10485

    Article  CAS  Google Scholar 

  41. King RB (2001) Chem Rev 101:1119–1152

    Article  CAS  Google Scholar 

  42. Schleyer PvR, Najafian K (1998) Inorg Chem 37:3454–3470

    Article  CAS  Google Scholar 

  43. King R (2001) Inorg Chem 40:6369–6374

    Article  CAS  Google Scholar 

  44. King R (2006) Inorg Chem 45:8211–8216

    Article  CAS  Google Scholar 

  45. King R (2003) Inorg Chem 42:3412–3415

    Article  CAS  Google Scholar 

  46. Schleyer PvR, Najafian K, Mebel AM (1998) Inorg Chem 37:6765–6772

    Article  CAS  Google Scholar 

  47. Balakrishnarajan MM, Hoffmann R, Pancharatna PD, Jemmis ED (2003) Inorg Chem 42:4650–4659

    Article  CAS  Google Scholar 

  48. Srinivasu K, Chandrakumar KRS, Ghosh SK (2010) J Phys Chem A 114:12244–12250

    Article  CAS  Google Scholar 

  49. Williams RE (1992) Chem Rev 92:177–207

    Article  CAS  Google Scholar 

  50. Hofmann M, Kiani FA (2009) J Organomet Chem 694:1666–1670

    Article  CAS  Google Scholar 

  51. Liao R, Tian Z, Cui Y, Sa R (2012) Struct Chem 23:1797–1800

    Article  CAS  Google Scholar 

  52. Williams RE (1971) Inorg Chem 10:210–214

    Article  CAS  Google Scholar 

  53. Armstrong DR, Fox MA, Wade K (2012) J Organomet Chem 697:130–136

    Article  Google Scholar 

  54. Fu L, Xie H, Ding Y (2009) Inorg Chem 48:5370–5375

    Article  CAS  Google Scholar 

  55. Zdetsis AD (2007) J Chem Phys 127:244308

    Article  Google Scholar 

  56. King R, Silaghi-Dumitrescu I, Kun A (2002) J Chem Soc Dalton Trans 31:3999–4004

  57. Tai TB, Nguyen MT (2011) J Chem Theory Comput 7:1119–1130

    Article  CAS  Google Scholar 

  58. King R, Silaghi-Dumitrescu I, Lupan A (2005) Dalton Trans 10:1858–1864

    Article  Google Scholar 

  59. King R, Silaghi-Dumitrescu I (2003) Inorg Chem 42:6701–6708

    Article  CAS  Google Scholar 

  60. King R, Silaghi-Dumitrescu I, Uţă I (2006) Inorg Chem 45:4974–4981

    Article  CAS  Google Scholar 

  61. King R, Silaghi-Dumitrescu I, Lupan A (2005) Inorg Chem 44:3579–3588

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Fuyang Teachers College (2013FSKJ05ZD) is gratefully acknowledged. And we also thank Prof. Mingsheng Tang and Dr. Yanyan Zhu of Zhengzhou University for the valuable suggestion in writing, molecule geometry computation, and picture making of this article.

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongbao Liao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, R., Zhu, Y., Li, Q. et al. A topological pattern for understanding the structures of boranes and borane analog compounds. Struct Chem 26, 353–364 (2015). https://doi.org/10.1007/s11224-014-0488-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0488-1

Keywords

Navigation