Skip to main content
Log in

Variations of bistricyclic aromatic enes: mono-bridged tetraarylethene naphthologs

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The syntheses, molecular and crystal structures, NMR spectroscopic study, and DFT computational study of naphthologs of mono-bridged (X = –, O, S, Se, and Te) tetraarylethene (BAE-1s) 1125 with α,α-, β,β-, and α,β-dinaphthalenyl substituents have been reported. The BAE-1s have been prepared by Barton–Kellog twofold extrusion from the respective chalcogenothiones and diazomethylenebisnaphthylenes. Complete assignments of 1H- and 13C-NMR spectra of 1125 have been made through 2-dimensional correlation spectroscopy (DQF-COSY, HSQC, HMBC, and NOESY). The corresponding intermediates, thiiranes 3347, have been also isolated (except 38), and their molecular and crystal structures have been determined. The molecular structures of BAE-1s 1215, 20, and 22–25 adopted folded-twisted conformations with considerably folded (φ = 30°–57°) tricyclic moieties. The α,α- and α,β-dinaphthalenyl derivatives are more overcrowded than β,β-dinaphthalenyl derivatives. The relief of the steric strain due to the overcrowding around C9 = C9′ caused by the presence of naphthalenyl substituents was achieved by their twisting around the single bonds that connect the α-naphthalenyl and β-naphthalenyl moieties to C9′. The 1H-NMR spectra have shown shielding of H2, H7 of 1125 and the pronounced deshielding of H8′, H8″ of α,α-dinaphthalenyl-substituted BAE-1s 1315 in contrast to β,β-dinaphthalenyl-substituted BAE-1s 1620. The upfield shifts of H2, H7 suggested conformations in which these hydrogens are located above the planes of the opposing naphthalene rings. DFT calculations of 1120 have been performed at B3LYP/6-31G(d) and B3LYP/SDD. The results have shown that the global minima of BAE-1s without a chalcogen bridge 11 and 16 are twisted (–sc,–sc)-C 2-t conformations. The global minima of BAE-1s with a chalcogen bridge are folded-twisted (–sc,–ac)-C 1-ft conformations for α,α-dinaphthalenyl-substituted BAE-1s 1215 and either anti- or syn-(–sc,ac)-C 1-ft conformations for β,β-dinaphthalenyl-substituted BAE-1s 1720. The pronounced differences between the α,α-dinaphthalenyl and the β,β-dinaphthalenyl derivatives are noted. Dispersion-corrected B3LYP calculations stabilize significantly the α,α-dinaphthalenyl derivatives versus the β,β-dinaphthalenyl derivatives. The geometrical parameters of BAEs-1 1115 and 20, derived from their molecular X-ray structures and from their B3LYP-optimized geometries are in a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Shoham G, Cohen S, Suissa RM, Agranat I (1988) Stereochemistry of strained, overcrowded bistricyclic ethylenes. In: Stezowski JJ, Huang J-L, Shao M-C (eds) Molecular structure: chemical reactivity and biological activity. IUCr crystallographic symposia 2. Oxford University Press, Oxford, pp 290–312

  2. Biedermann PU, Stezowski JJ, Agranat I (1998) In: Thummel RP (ed) Advances in theoretically interesting molecules, vol 4. JAI Press, Stamford, pp 245–322

    Chapter  Google Scholar 

  3. Biedermann PU, Stezowski JJ, Agranat I (2001) Eur J Org Chem 2001:15–34

    Article  Google Scholar 

  4. Biedermann PU, Agranat I (2014) Top Curr Chem. doi:10.1007/128_2014_534

    Google Scholar 

  5. de la Harpe C, van Dorp WA (1875) Ber Dtsch Chem Ges 8:1048–1050

    Article  Google Scholar 

  6. Gurgenjanz G, von Konstanecki S (1895) Ber Dtsch Chem Ges 28:2310–2311

    Article  CAS  Google Scholar 

  7. Meyer H (1909) Ber Dtsch Chem Ges 42:143–145

    Article  CAS  Google Scholar 

  8. Meyer H (1909) Monatsh Chem 30:165–177

  9. Schönberg A, Schütz O (1928) Ber Dtsch Chem Ges 61:478–479

    Article  Google Scholar 

  10. Korenstein R, Muszkat KA, Fischer E (1976) J Photochem 5:345–353

    Article  CAS  Google Scholar 

  11. Levy A, Biedermann PU, Cohen S, Agranat I (2000) J. Chem Soc Perkin Trans 2(2000):725–735

  12. Levy A, Biedermann PU, Cohen S, Agranat I (2001) J Chem Soc Perkin Trans 2(2001):2329–2341

    Article  Google Scholar 

  13. Feringa BL (2001) Acc Chem Res 34:504–513

    Article  CAS  Google Scholar 

  14. Bell F, Waring DH (1949) J Chem Soc 1949:2689–2693

  15. Harnik E, Herbstein FH, Schmidt GMJ (1951) Nature 168:158–160

    Article  CAS  Google Scholar 

  16. Biedermann PU, Stezowski JJ, Agranat I (2001) Chem Commun 2001:954–955

    Article  Google Scholar 

  17. Biedermann PU, Stezowski JJ, Agranat I (2006) Chem Eur J 12:3345–3354

    Article  CAS  Google Scholar 

  18. Levy A, Pogodin S, Cohen S, Agranat I (2007) Eur J Org Chem 2007:5198–5211

    Article  Google Scholar 

  19. Pogodin S, Suissa MR, Levy A, Cohen S, Agranat I (2008) Eur J Org Chem 2008:2887–2894

    Article  Google Scholar 

  20. Assadi N, Pogodin S, Cohen S, Levy A, Agranat I (2009) Struct Chem 20:541–556

    Article  CAS  Google Scholar 

  21. Bock H, Ruppert K, Herdtweck E, Herrmann WA (1992) Helv Chim Acta 75:1816–1824

    Article  CAS  Google Scholar 

  22. Shi J, Chang N, Li C, Mei J, Deng C, Luo X, Liu Z, Bo Z, Dong YQ, Tang BZ (2012) Chem Commun 48:10675–10677

    Article  CAS  Google Scholar 

  23. Hong Y, Lam JWY, Tang BZ (2009) Chem Commun 45:4332–4353

    Article  Google Scholar 

  24. Zhou J, Chang Z, Jiang Y, He B, Du M, Lu P, Hong Y, Kwok HS, Qin A, Qui H, Zhao Z, Tang BZ (2013) Chem Commun 49:2491–2493

    Article  CAS  Google Scholar 

  25. Pogodin S, Assadi N, Agranat I (2013) Struct Chem 24:1747–1757

    Article  CAS  Google Scholar 

  26. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Adv Mater 26:5429–5479

  27. Kanawati B, Genest A, Schmitt-Kopplin P, Lenoir D (2012) J Mol Model 18:5089–5095

    Article  CAS  Google Scholar 

  28. Assadi N, Pogodin S, Cohen S, Agranat I (2013) Struct Chem 24:1229–1240

    Article  CAS  Google Scholar 

  29. Bruker AXS GmbH (2002) SMART-NT V5.6, D-76181 Karlsruhe, Germany

  30. Bruker AXS GmbH (2002) SAINT-NT V5.0, D-76181 Karlsruhe, Germany

  31. Bruker AXS GmbH (2002) SHELXTL-NT V6.1, D-76181 Karlsruhe, Germany

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi S, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford

    Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  36. Grimme S (2011) WIREs Comput Mol Sci 1:211–228

    Article  CAS  Google Scholar 

  37. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104–154119

    Article  Google Scholar 

  38. Ehrlich S, Moellmann J, Grimme S (2013) Acc Chem Res 46:916–926

    Article  CAS  Google Scholar 

  39. Barton DHR, Smith ER, Willis BJ (1970) J Chem Soc D: Chem Commun 1226–1226

  40. Barton DHR (1996) Reason and Imagination: Reflections on Research, In: Organic Chemistry: Selected Papers of Derek H. R. Barton, Imperial College Press and World Scientific, Singapore, vol. 6, p. 489

  41. Wang Z (2009) Barton-Kellogg olefination. In: Comprehensive organic name reactions and reagents, vol. 1, chapter 56. Wiley, New York, pp 249–253

  42. Assadi N, Pogodin S, Cohen S, Agranat I (2012) Struct Chem 23:771–790

    Article  CAS  Google Scholar 

  43. CCDC-1004535 (13), 1004536 (14), 1004537 (15), 1004538 (20), 1004539 (22), 1004540 (23), 1004541 (24), 1004542 (25), 1004543 (35), 1004544 (36), 1004545 (37), 1004546 (41), 1004547 (44) and 1004548 (47) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html. Accessed 20 Aug 2014 [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033; email: deposit@ccdc.cam.ac.uk]

  44. Lee J-S, Nyburg SC (1985) Acta Crystallogr C 41:560–567

    Article  Google Scholar 

  45. Zefirov YV (1997) Crystallogr Rep 42:111–116 Transl. from Kristallografiya 42:122–128

    Google Scholar 

  46. Martin NH, Allen NW III, Moore KD, Vo L (1998) Theochem 454:161–166

    Article  CAS  Google Scholar 

  47. Llabrès G, Baiwir M, Christiaens L, Piette JL (1979) Can J Chem 57:2967–2970

    Article  Google Scholar 

  48. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  49. Levy A, Biedermann PU, Cohen S, Agranat I (1998) Phosphorus Sulfur Silicon 136:139–142

  50. Schneebeli ST, Bochevarov AD, Friesner RA (2011) J Chem Theory Comput 7:658–668

    Article  CAS  Google Scholar 

  51. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439–10452

    Article  CAS  Google Scholar 

  52. Pogodin S, Rae ID, Agranat I (2006) Eur J Org Chem 2006:5059–5068

    Article  Google Scholar 

  53. Assadi N, Pogodin S, Agranat I (2011) Eur J Org Chem 2011:6773–6780

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Agranat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assadi, N., Pogodin, S., Cohen, S. et al. Variations of bistricyclic aromatic enes: mono-bridged tetraarylethene naphthologs. Struct Chem 26, 319–352 (2015). https://doi.org/10.1007/s11224-014-0482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0482-7

Keywords

Navigation