Skip to main content
Log in

Theoretical investigation of the 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene (exTTF) dimer

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene (exTTF) is commonly used as pincer in fullerene receptors. In order to understand how this molecule interacts with itself, and thus gain insight in the overall interaction in fullerene receptors which use exTTF as pincer, we studied the exTTF dimer at the M06-2X and ωB97XD levels of theory. The results indicate that this supramolecular complex displays an interaction energy which is larger than the one determined for corannulene. However, the most important difference between both fullerene pincers is not the interaction energy but the number of conformations available, which are larger for the exTTF-based dimer. In effect, at least four completely different structures of the exTTF dimer present interaction energies larger than that computed for corannulene. For this reason, exTTF is expected to: a) adopt strongly dispersion-bound conformations when it is used as pincer to construct fullerene receptors and b) intricate crystallographic structures when stacked with fullerenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boyd PDW, Hodgson MC, Rickard CEF, Oliver AG, Chaker L, Brothers PJ, Bolskar RD, Tham FS, Reed CA (1999) J Am Chem Soc 121:10487–10495

    Article  CAS  Google Scholar 

  2. Olmstead MM, Costa DA, Maitra K, Noll BC, Phillips SL, Van Calcar PM, Balch AL (1999) J Am Chem Soc 121:7090–7097

    Article  CAS  Google Scholar 

  3. Zheng J-Y, Tashiro K, Hirabayashi Y, Kinbara K, Saigo K, Aida T, Sakamoto S, Yamaguchi K (2001) Angew Chem Int Ed 40:1857

    Article  CAS  Google Scholar 

  4. Yanagisawa M, Tashiro K, Yamasaki M, Aida T (2007) J Am Chem Soc 129:11912

    Article  CAS  Google Scholar 

  5. Suzuki M, Slanina Z, Mizorogi N, Lu X, Nagase S, Olmstead MM, Balch AL, Akasaka T (2012) J Am Chem Soc 134:18772–18778

    Article  CAS  Google Scholar 

  6. Giguere J-B, Morin J-F (2012) Org Biomol Chem 10:1047

    Article  CAS  Google Scholar 

  7. Sygula A, Fronczek FR, Sygula R, Rabideau PW, Olmstead MM (2007) J Am Chem Soc 129:3842

    Article  CAS  Google Scholar 

  8. Sygula A (2011) Eur J Org Chem 9:1611

    Article  Google Scholar 

  9. Zhao Y, Truhlar DG (2008) Phys Chem Chem Phys 10:2813

    Article  CAS  Google Scholar 

  10. Muck-Lichtenfeld C, Grimme S, Kobryn L, Sygula A (2010) Phys Chem Chem Phys 12:7091

    Article  Google Scholar 

  11. Grimme S (2012) Chem Eur J 18:9955

    Article  CAS  Google Scholar 

  12. Risthaus T, Grimme S (2013) J Chem Theory Comput 9:1580–1591

    Article  CAS  Google Scholar 

  13. Tkatchenko A, Alfè D, Kim KS (2012) J Chem Theory Comput 8:4317–4322

    Article  CAS  Google Scholar 

  14. Denis PA (2011) Chem Phys Lett 516:82

    Article  CAS  Google Scholar 

  15. Denis PA (2013) RSC Adv 3:25296

    Article  CAS  Google Scholar 

  16. Denis PA (2013) Chem Phys Lett 591:323

    Article  Google Scholar 

  17. Stuparu MC (2013) Angew Chem Int Ed 52:7786

    Article  CAS  Google Scholar 

  18. Huerta E, Isla H, Perez EM, Bo C, Martın N, de Mendoza J (2010) J Am Chem Soc 132:5351–5353

    Article  CAS  Google Scholar 

  19. Isla H, Gallego M, Perez EM, Viruela R, Orti E, Martın N (2010) J Am Chem Soc 132:1772–1773

    Article  CAS  Google Scholar 

  20. Yanney M, Sygula A (2013) Tetrahedron Lett 54:2604

    Article  CAS  Google Scholar 

  21. Mizyed S, Georghiou PE, Bancu M, Cuadra B, Rai AK, Cheng P, Scott LT (2001) J Am Chem Soc 123:12770–12774

    Article  CAS  Google Scholar 

  22. Georghiou PE, Tran A-H, Mizyed S, Bancu M, Scott LT (2005) J Org Chem 70:6158–6163

    Article  CAS  Google Scholar 

  23. Dawe LN, AlHujran TA, Tran H-A, Mercer JI, Jackson EA, Scott LT, Georghiou PE (2012) Chem Commun 48:5563–5565

    Article  CAS  Google Scholar 

  24. Whalley AC, Plunkett KN, Gorodetsky AA, Schenk CL, Chiu C-Y, Steigerwald ML, Nuckolls C (2011) Chem Sci 2:132

    Article  CAS  Google Scholar 

  25. Casella G, Saielli G (2011) New J Chem 35:1453–1459

    Article  CAS  Google Scholar 

  26. King BT, Olmstead MM, Baldridge KK, Kumar B, Balch AL, Gharamaleki JA (2012) Chem Commun 48:9882–9884

    Article  CAS  Google Scholar 

  27. Wang L-X, Zhao L, Wang D-X, Wang M-X (2011) Chem Commun 47:9690–9692

    Article  CAS  Google Scholar 

  28. Filatov AS, Ferguson MV, Spisak SN, Li B, Campana CF, Petrukhina MA (2014) Cryst Growth Des 14:756

    Article  CAS  Google Scholar 

  29. Janowski T, Pulay P, Karunarathna AAS, Sygula A, Saebo S (2011) Chem Phys Lett 512:155

    Article  CAS  Google Scholar 

  30. Vijay D, Sakurai H, Sastry GN (2011) Int J Quantum Chem 111:1893

    Article  CAS  Google Scholar 

  31. Priyakumar UD, Sastry GN (2001) J Phys Chem A 105:4488

    Article  CAS  Google Scholar 

  32. Sygula A, Saebo S (2009) Int J Quantum Chem 109:65

    Article  CAS  Google Scholar 

  33. Kennedy MR, Burns LA, Sherrill CD (1926) J Phys Chem A 116(2012):11920–11921

    Google Scholar 

  34. Zhao Y, Truhlar DG (2008) Theor. Chem. Acc. 120:215

    Article  CAS  Google Scholar 

  35. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  36. Ditchfeld R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  Google Scholar 

  37. Woon WE, Dunning TH (1994) J Chem Phys 100:2975

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox JD (2009) Gaussian 09 software, Gaussian Inc., Wallingford

  39. Zhou Z, Qin Y, Xu W, Zhu D (2014) Chem Commun 50:4082

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank PEDECIBA Quimica for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Denis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denis, P.A., Iribarne, F. Theoretical investigation of the 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene (exTTF) dimer. Struct Chem 26, 171–176 (2015). https://doi.org/10.1007/s11224-014-0480-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0480-9

Keywords

Navigation