Skip to main content
Log in

Influence of Se and Zn substitution on the electronic transport on a CdTe nanotube-based molecular device: a first-principles study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The electronic transport property of pure cadmium telluride (CdTe) nanotube, selenium-substituted and zinc-substituted CdTe nanotube-based molecular device are investigated with density functional theory. The electronic transport property of CdTe nanotube is studied in terms of device density of states (DOS), electron density, transmission spectrum, and transmission pathways. The substitution of selenium and zinc atoms along the left electrode and bias voltage has the impact in the DOS. The electron density is found to be more at cadmium site in the left electrode. The transmission spectrum provides the insight into the transmission of electrons from valence band to conduction band across CdTe nanotube. The transmission pathway provides the visualization of electron transmission along CdTe nanotube. The results of present work provide a clear vision to tailor CdTe nanostructures with enhanced electronic property with substitution impurity for optoelectronic devices and photovoltaic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Talapin DV, Shevchenko EV, Murray CB, Kornowski A, Forster S, Weller H (2004) J Am Chem Soc 126:12984

    Article  CAS  Google Scholar 

  2. Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Science 310:462

    Article  CAS  Google Scholar 

  3. Ediger M, Bester G, Badolato A, Petroff PM, Karrai K, Zunger A, Warburton RJ (2007) Nat Phys 3:774

    Article  CAS  Google Scholar 

  4. Ferekides CS, Balasubramanian U, Mamazza R, Viswanathan V, Zhao H, Morel DL (2004) Sol Energy 77:823

    Article  CAS  Google Scholar 

  5. Mahammad Hussain O, Jayarama Reddy P (1991) J Mater Sci Lett 10:813

    Article  Google Scholar 

  6. Khrypunov GS, Chernykh EP, Kovtun NA, Belonogov EK (2009) Semiconductors 43:1046

    Article  CAS  Google Scholar 

  7. Diamant R, Ponce L, Fernez M, Jimenez E (1998) Appl Phys B 66:639

    Article  CAS  Google Scholar 

  8. Kim K, Kim K, Kim HJ, Suh SH, Carmody M, Sivananthan S, Kim JS (2010) J Electron Mater 39:863

    Article  CAS  Google Scholar 

  9. Matsumoto H, Kuribayashi K, Uda H, Komatsu Y, Nakano A, Ikegami S (1984) Solar Cells 11:367

    Article  CAS  Google Scholar 

  10. Bonilla S, Dalchiele EA (1991) Thin Solid Films 204:397

    Article  CAS  Google Scholar 

  11. Nikale VM, Shinde SS, Bhosale CH, Rajpure KY (2011) J Semicond 32:033001

    Article  Google Scholar 

  12. Isona VV, Ranga Rao A, Dutta V (2009) Solid State Sci 11:2003

    Article  Google Scholar 

  13. Zhu H, Gu M, Huang L, Wang J, Wu X (2014) Mater Chem Phys 143:637

    Article  CAS  Google Scholar 

  14. Peköz R, Erkoç S (2009) Comput Mater Sci 45:912

    Article  Google Scholar 

  15. Alnemrat S, Park YH, Vasiliev I (2014) Physica E 57:96

    Article  CAS  Google Scholar 

  16. Sriram S, Chandiramouli R (2013) Res Chem Intermed. doi:10.1007/s11164-013-1334-6

    Google Scholar 

  17. Du M-H, Takenaka H, Singh DJ (2008) J Appl Phys 104:093521

    Article  Google Scholar 

  18. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Portal DS (2002) J Phys Condens Matter 14:2745

    Article  CAS  Google Scholar 

  19. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  20. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533

    Article  CAS  Google Scholar 

  21. Chandiramouli R, Sriram S (2014) Superlattices Microstruct 65:22

    Article  CAS  Google Scholar 

  22. Yang C, Chen Q (2013) Int J Smart Nano Mater 1–7

  23. Srivastava A, Tyagi N (2012) Mater Chem Phys 137:103

    Article  CAS  Google Scholar 

  24. Jaiswal NK, Srivastava P (2012) Solid State Commun 152:1489

    Article  CAS  Google Scholar 

  25. Srivastava A, Tyagi N, Singh RK (2011) Mater Chem Phys 127:489

    Article  CAS  Google Scholar 

  26. Jaiswal NK, Srivastava P (2011) Solid State Commun 151:1490

    Article  CAS  Google Scholar 

  27. Chandiramouli R, Sriram S (2014) NANO 9:1450020

    Article  Google Scholar 

  28. Yamacli S, Avci M (2010) Expert Syst Appl 37:8014

    Article  Google Scholar 

  29. Chandiramouli R, Sriram S (2014) Mol Phys. doi:10.1080/00268976.2013.875230

    Google Scholar 

  30. Zhang D, Yuanlan Xu, Zhang J, Miao X (2012) Phys Lett A 376:3272

    Article  CAS  Google Scholar 

  31. Caliskan S (2013) Phys Lett A 377:1766

    Article  CAS  Google Scholar 

  32. Choudhary S, Qureshi S (2013) Phys Lett A 377:430

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 568 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandiramouli, R. Influence of Se and Zn substitution on the electronic transport on a CdTe nanotube-based molecular device: a first-principles study. Struct Chem 25, 1563–1572 (2014). https://doi.org/10.1007/s11224-014-0434-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0434-2

Keywords

Navigation