Skip to main content
Log in

First-principles investigation of the electronic and field emission properties of C-doped ZnO nanotube

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In order to search for novel field emitter nanomaterial, a density functional theory investigation is performed to understand electronic structures and field emission properties of carbon doped–ZnO nanotube. It has been revealed that electron transport through ZnONT is significantly increased in the presence of the carbon atom due to the reduced HOMO–LUMO energy gap, which makes the electrons easily excited from HOMO to LUMO, and then the electrons can easily emit. Comparing the ionization potentials of the pure and doped ZnONT, at the same external electric field strength, the ionization potential of C–doped ZnO nanotube is lower than that of pure one. Also, after the doping of carbon atom, the Fermi level of ZnONT increases, which indicates that the Fermi level shifts toward the conduction band. These results indicate that the field emission properties of ZnONT can be enhanced by the doping of ZnO nanotube with the carbon atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2013) Chem Phys Lett 565:69–73

    Article  CAS  Google Scholar 

  2. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2012) Chem Phys Lett 541:85–91

    Article  CAS  Google Scholar 

  3. Saha S, Dinadayalane TC, Murray JS, Leszczynska D, Leszczynski J (2012) J Phys Chem C 116:22399–22410

    Article  CAS  Google Scholar 

  4. Fowler RH, Nordheim LW (1928) Proc R Soc Lond A 119:173–181

    Article  CAS  Google Scholar 

  5. Nordheim LW (1928) Proc R Soc Lond 121:629–639

    Article  Google Scholar 

  6. Rinzler AG, Hafner JH, Nikolaev P, Lou L, Kim SG, Tomimek D, Nordlander P, Colbert DT, Smalley RE (1995) Science 269:1550–1553

    Article  CAS  Google Scholar 

  7. De Jonge N, Allioux M, Doytcheva M, Kaiser M, Teo KBK, Lacerda G (2004) Appl Phys Lett 85:1607–1609

    Article  Google Scholar 

  8. Bonard JM, Dean KA, Coll BF, Klinke C (2002) Phys Rev Lett 89:197602/1–197602/4

    Article  CAS  Google Scholar 

  9. Lovall D, Buss M, Graugnard E, Andres RP, Reifenberger R (2000) Phys Rev B 61:5683–5691

    Article  CAS  Google Scholar 

  10. Chernozatonskii LA, Gulyaev YuV, Kosakovskaja ZJ, Sinitsyn NI, Torgashov GV, Zakharchenko YuF, Fedorov EA, Val’chuk VP (1995) Chem Phys Lett 233:63–68

    Article  CAS  Google Scholar 

  11. Iijima S (1991) Nature (London) 354:56–58

    Article  CAS  Google Scholar 

  12. Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, Lee YH, Jung JE, Lee NS, Park GS, Kim JM (1999) Appl Phys Lett 75:3129–3131

    Article  CAS  Google Scholar 

  13. Choi WB, Lee YH, Lee NS, Kang JH, Park SH, Kim HY, Chung DS, Lee SM, Chung SY, Kim JM (2000) Jpn J Appl Phys 39:2560–2564

    Article  CAS  Google Scholar 

  14. Sugie H, Tanemura M, Filip V, Iwata K, Takahashi K, Okuyama F (2001) Appl Phys Lett 78:2578–2580

    Article  CAS  Google Scholar 

  15. De Jonge N, Lamy Y, Schoots K, Oosterkamp TH (2002) Nature 420:393–395

    Article  Google Scholar 

  16. Chan LH, Hong KH, Xiao DQ, Hsieh WJ, Lai SH, Shih HC, Lin TC, Shieu FS, Chen KJ, Cheng HC (2003) Appl Phys Lett 82:4334–4336

    Article  CAS  Google Scholar 

  17. Qiao L, Zheng WT, Xu H, Zhang L, Jiang Q (2007) J Chem Phys 126:164702/1–164702/7

    Article  CAS  Google Scholar 

  18. Qiao L, Wang C, Qu CQ, Zeng Y, Hu XY, Yu SS, Hu XY, Zheng WT, Jiang Q (2009) Diam Relat Mater 18:657–661

    Article  CAS  Google Scholar 

  19. Yan XB, Tay BK, Miele P (2008) Carbon 46:753–758

    Article  CAS  Google Scholar 

  20. Shen L, Ma ZQ, Shen C, Li F, Heand B, Xu F (2010) Superlattices Microstruct 48:426–433

    Article  CAS  Google Scholar 

  21. Lai BT, Lee CT, Hong JD, Yao SL, Liu DS (2010) Jpn J Appl Phys 49:085501/1–085501/6

    CAS  Google Scholar 

  22. Hong CS, Park HH, Moon J (2006) Thin Solid Films 515:957–960

    Article  CAS  Google Scholar 

  23. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Science 294:1488–1495

    Article  CAS  Google Scholar 

  24. Hong RY, Li JH, Chen LL, Liu DQ, Li HZ, Zheng Y, Ding J (2009) Powder Technol 189:426–432

    Article  CAS  Google Scholar 

  25. Banerjee D, Jo SH, Ren ZF (2004) Adv Mater 16:2028–2032

    Article  CAS  Google Scholar 

  26. Chu DW, Masuda Y, Ohji T, Kato K (2010) Langmuir 26:2811–2815

    Article  CAS  Google Scholar 

  27. Wei A, Xu C, Sun XW, Huang W, Lo GQ (2008) J Display Technol 4:9–12

    Article  CAS  Google Scholar 

  28. Son JY, Lim SJ, Cho JH, Seong WK, Kim H (2008) Appl. Phys. Lett. 93:053109/1–053109/3

    CAS  Google Scholar 

  29. Fan ZY, Wang DW, Chang PC, Tseng WY, Lu JG (2004) Appl Phys Lett 85:5923–5925

    Article  CAS  Google Scholar 

  30. Chang PC, Fan Z, Wang D, Tseng WT, Chiou WA, Hong J, Lu JG (2004) Chem Mater 16:5133–5137

    Article  CAS  Google Scholar 

  31. Li Q, Bian J, Sun J, Wang J, Luo Y, Sun K, Yu D (2010) Appl Surf Sci 256:1698–1702

    Article  CAS  Google Scholar 

  32. Yan JF, Lu YM, WeiLiang H, Liu YC, Li BH, Fan XW, Zhou JM (2005) J Cryst Growth 280:206–211

    Article  CAS  Google Scholar 

  33. Duan J, Huang X, Wang E (2006) Mater Lett 60:1918–1921

    Article  CAS  Google Scholar 

  34. Park WI, Kim DH, Jung SW, Yi GC (2002) Adv Mater 14:1841–1843

    Article  CAS  Google Scholar 

  35. Cho S, Lee KH (2010) Cryst Growth Des 10:1289–1295

    Article  CAS  Google Scholar 

  36. Song J, Wang X, Riedo E, Wang ZL (2005) J Phys Chem B 109:9869–9872

    Article  CAS  Google Scholar 

  37. Wang XD, Song JH, Summers CJ, Ryou JH, Li P, Dupuis RD, Wang ZL (2006) J Phys Chem B 110:7720–7724

    Article  CAS  Google Scholar 

  38. Liu J, Chen X, Wang W, Liu Yu (2011) Cryst Eng Comm 13:3425–3431

    Article  CAS  Google Scholar 

  39. Li P, Liu H, Lu B, Wei Y (2010) J Phys Chem C 114:21132–21137

    Article  CAS  Google Scholar 

  40. Phan TL, Sun YK, Vincent R (2011) J Korean Phys Soc 59:60–64

    Article  CAS  Google Scholar 

  41. Lim YS, Park JW, Hong ST, Kim J (2006) Mater Sci Eng B 129:100–103

    Article  CAS  Google Scholar 

  42. Yang X, Lei W, Zhang X, Qu K, Zhang J (2009) Phys E 41:1661–1664

    Article  CAS  Google Scholar 

  43. Gao H, Zhang XT, Zhou MY, Zhang ZG, Wang XZ (2007) Nanotechnology 18:065601

    Article  Google Scholar 

  44. Gao H, Zhang X, Zhou M, Zhang E, Zhang Z (2006) Solid State Commun 140:455–458

    Article  CAS  Google Scholar 

  45. Zhai T, Xie S, Zhao Y, Sun X, Lu X, Yu M, Xu M (2012) Cryst Eng Comm 14:1850–1855

    Article  CAS  Google Scholar 

  46. Xu C, Yang K, Huang L, Wang H (2010) J Renew Sustain Energy 2:053101/1–053101/7

    Article  CAS  Google Scholar 

  47. Ibupoto ZH, Jamal N, Khun K, Willander M (2012) Sens Actuator B 166–167:809–814

    Article  Google Scholar 

  48. Yang J, Lin Y, Meng Y, Liu Y (2012) Ceram Int 38:4555–4559

    Article  CAS  Google Scholar 

  49. Kar S, Patel C, Santra S (2008) J Phys Chem C 112:8144–8146

    Article  CAS  Google Scholar 

  50. Liu Y, Gao C, Pan X, An X, Xie Y, Zhou M, Song J, Zhang H, Liu Z, Zhao Q, Zhang Y, Xie E (2011) Appl Surf Sci 257:2264–2268

    Article  CAS  Google Scholar 

  51. Cho S, Kim DH, Lee BS, Jung J, Yu WR, Hong SH, Lee S (2012) Sens Actuator B 162:300–306

    Article  CAS  Google Scholar 

  52. Lee WJ, Chang JG, Ju SP, Lee CH (2011) J Nanopart Res 13:4749–4756

    Article  CAS  Google Scholar 

  53. Sun QD, Yu B, Liu CJ (2012) Plasma Chem Plasma Process 32:201–209

    Article  CAS  Google Scholar 

  54. Ranjusha R, Sreeja R, Mini PA, Subramanian KRV, Shantikumar VN (2012) Mater Res Bull 47:1887–1891

    Article  CAS  Google Scholar 

  55. An W, Wu XJ, Zeng XC (2008) J Phys Chem C 112:5747–5755

    Article  CAS  Google Scholar 

  56. Li F, Zhang C, Wang P, Li P (2012) Appl Surf Sci 258:6621–6626

    Article  CAS  Google Scholar 

  57. Duan MY, Shi SG, Wang CL, Zhou LP, Chen XR, Fang HP (2012) Commun Theor Phys 58:275–279

    Article  CAS  Google Scholar 

  58. He AL, Wang XQ, Fan YQ, Feng YP (2010) J Appl Phys 108:084308/1–0884308/5

    CAS  Google Scholar 

  59. Song DM, Wang TH, Li JC (2012) J Mol Model 18:5035–5040

    Article  CAS  Google Scholar 

  60. Delley B (1990) J Chem Phys. 92:508–517

    Article  CAS  Google Scholar 

  61. Delley B (1995) Theor Comput Chem 2:221–254

    Article  CAS  Google Scholar 

  62. Delley B (1998) Int J Quantum Chem 69:423–433

    Article  CAS  Google Scholar 

  63. Inada Y, Orita H (2007) J Comput Chem 29:225–232

    Article  Google Scholar 

  64. Schluter M, Sham LJ (1982) Phys Today 35:36–43

    Article  Google Scholar 

  65. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  66. Wu RQ, Peng GW, Liu L, Feng YP (2006) J Phys 18:569–576

    CAS  Google Scholar 

  67. Wei M, Li CF, Deng XR, Deng H (2012) Energy Procidia 16:76–80

    Article  CAS  Google Scholar 

  68. Ju S, Kim S, Mohammadi S, Janesa DB, Ha YG (2008) Appl Phys Lett 92:022104/1–022104/3

    CAS  Google Scholar 

  69. Bai XD, Wang EG, Gao PX, Wang ZL (2003) Nano Lett 3:1147–1150

    Article  CAS  Google Scholar 

  70. Zhang S, Zhang Y, Huang S, Liu H, Wang P, Tian H (2011) Carbon 49:3835–3841

    Article  CAS  Google Scholar 

  71. Hirshfeld FL (1977) Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  72. Saha S, Roy RK, Ayers PW (2009) Int J Quantum Chem 109:1790–1806

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the supports by University of Mazandaran as research facilities and financial grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Farmanzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farmanzadeh, D., Tabari, L. First-principles investigation of the electronic and field emission properties of C-doped ZnO nanotube. Struct Chem 25, 1437–1442 (2014). https://doi.org/10.1007/s11224-014-0423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0423-5

Keywords

Navigation