Skip to main content
Log in

Ab initio study of water clustering in the presence of a methyl radical

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The geometrical structure and binding energy of small clusters of methyl radical and water molecules (up to five water molecules) in gas phase and water media have been investigated at the MP2 level of theory using 6-311++G(2df,2p) basis set. The complexes characterized contain OH···O, CH···O, and OH···C attractive interactions with stabilization energies in the range 6–143 kJ mol−1. The solvent has an enhancing influence on the stabilities of studied clusters. The atoms in molecules theory were also applied to explain the nature of the complexes. The interaction energies have been partitioned with the natural energy decomposition analysis showing that the most important attractive term corresponds to the charge transfer one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Muller-Dethlefs K, Hobza P (2000) Chem Rev 100:143

    Article  Google Scholar 

  2. Scheiner S (1997) Hydrogen bonding. A theoretical perspective. Oxford University Press, Oxford and references therein

    Google Scholar 

  3. Hobza P, Havlas Z (2000) Chem Rev 100:4253

    Article  CAS  Google Scholar 

  4. Solimannejad M, Azimi G, Lj Pejov (2004) Chem Phys Lett 400:185

    Article  CAS  Google Scholar 

  5. Solimannejad M, Azimi G, Pejov Lj (2004) Chem Phys Lett 391:201

    Article  CAS  Google Scholar 

  6. Solimannejad M, Alikhani ME (2005) Chem Phys Lett 406:351

    Article  CAS  Google Scholar 

  7. Solimannejad M, Alkorta I (2006) J Phys Chem A 110:10817

    Article  CAS  Google Scholar 

  8. Solimannejad M, Scheiner S (2006) Chem Phys Lett 429:38

    Article  CAS  Google Scholar 

  9. Solimannejad M, Scheiner S (2006) J Phys Chem A 110:5948

    Article  CAS  Google Scholar 

  10. Solimannejad M, Shirazi SG, Scheiner S (2007) J Phys Chem A 111:10717

    Article  CAS  Google Scholar 

  11. Solimannejad M, Nielsen CJ, Scheiner S (2008) Chem Phys Lett 466:136

    Article  CAS  Google Scholar 

  12. Solimannejad M, Massahi S, Scheiner S (2009) J Mol Struct (THEOCHEM) 913:50

    Article  CAS  Google Scholar 

  13. Solimannejad M, Scheiner S (2009) Mol Phys 107:713

    Article  CAS  Google Scholar 

  14. Johnson ER, Dilabio GA (2009) Interdiscip Sci 1:133

    Article  CAS  Google Scholar 

  15. Hammerum S (2009) J Am Chem Soc 131:8627

    Article  CAS  Google Scholar 

  16. Franchi P, Lucarini M, Pedrielli P, Pedulli GF (2002) Chem Phys Chem 3:789

    Article  CAS  Google Scholar 

  17. Alkorta I, Rozas J, Elguero J (1998) J Phys Chem 102:429

    Article  CAS  Google Scholar 

  18. Wang B, Li Z, Wu D, Hao X, Li R, Sun C (2003) Chem Phys Lett 375:91

    Article  CAS  Google Scholar 

  19. Tang K, Shi FQ (2007) Int J Quantum Chem 107:665

    Article  CAS  Google Scholar 

  20. An X, Liu H, Li Q, Gong B, Cheng J (2008) J Phys Chem A 112:5258

    Article  CAS  Google Scholar 

  21. Li Q, Zhu H, An X, Gong B (2009) Int J Quantum Chem 109:605

    Article  CAS  Google Scholar 

  22. Romieu A, Bellon S, Gasparutto D (2000) Org Lett 2:1085

    Article  CAS  Google Scholar 

  23. Alkorta I, Elguero J (2003) ARKIVOC xiv:31

    Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) GAUSSIAN03, Revision B.03. Gaussian, Inc, Pittsburgh, PA

  25. Qi XJ, Liu L, Fu Y, Guo QX (2005) Struct Chem 16:347

    Article  CAS  Google Scholar 

  26. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  27. Alkorta I, Trujillo C, Elguero J, Solimannejad M (2011) Comput Theor Chem 967:147

    Article  CAS  Google Scholar 

  28. Bader RFW (1990) In: Halpen J, Green MLH (eds) The international series of monographs of chemistry. Clarendon Press, Oxford

    Google Scholar 

  29. Biegler-Konig F, Schonbohm J (2002) AIM2000 Program Package, Ver. 2.0. University of Applied Sciences, Bielefeld

  30. Glendening ED (2011) J Am Chem Soc 118:2473

    Article  Google Scholar 

  31. Glendening ED (2005) J Phys Chem A 109:11936

    Article  CAS  Google Scholar 

  32. Weinhold F, Landis CR (2005) Valency and bonding. A natural bond orbital donor–acceptor perspective. Cambridge Press, Cambridge

  33. Zhao Y, Truhlar DG (2006) J Chem Theory Comput 2:1009

    Article  CAS  Google Scholar 

  34. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JE, Morales CM, Weinhold F (2004) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

  35. Schmidt JW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  36. Tomasi J, Mennucci B, Cammi R (1993) Chem Rev 105:2999

    Article  Google Scholar 

  37. Shields RM, Temelso B, Archer KA, Morrell TE, Shields GC (2010) J Phys Chem A 114:11725

    Article  CAS  Google Scholar 

  38. Ugalde JM, Alkorta I, Elguero J (2000) Angew Chem Int Ed 39:717

    Article  CAS  Google Scholar 

  39. Gregory JK, Clary DC (1996) J Phys Chem 100:18014

    Article  CAS  Google Scholar 

  40. Alkorta I, Blanco F, Deya PM, Elguero J, Estarellas C, Frontera A, Quinonero D (2010) Theor Chem Acc 126:1

    Article  CAS  Google Scholar 

  41. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154

    Article  CAS  Google Scholar 

  42. Mata I, Alkorta I, Molins E, Espinosa E (2010) Chem Eur J 16:2442

    Article  CAS  Google Scholar 

  43. Alkorta I, Zborowski K, Elguero J, Solimannejad M (2006) J Phys Chem A 110:10279

    Article  CAS  Google Scholar 

  44. Li QZ, Wang NN, Yu ZW (2007) J Mol Struct (THEOCHEM) 847:68

    Article  CAS  Google Scholar 

  45. Li QZ, An XL, Gong BA, Cheng JB (2007) J Phys Chem A 111:10166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with financial support from Arak University (Grant No. 90.12650).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Solimannejad or Ibon Alkorta.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solimannejad, M., Gharabaghi, M. & Alkorta, I. Ab initio study of water clustering in the presence of a methyl radical. Struct Chem 24, 491–497 (2013). https://doi.org/10.1007/s11224-012-0099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0099-7

Keywords

Navigation