Skip to main content
Log in

Charge-transfer complexes of meso-substituted porphines

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Charge-transfer (CT) complexes of 5,10,15,20-tetramethyl-21H,23H-porphine [H2(tmp)] and 5,10,15,20-tetraphenyl-21H,23H-porphine [H2(tpp)] have been prepared with TCNQ-type (TCNQ = 7,7,8,8-tetracyanoquinodimethane) acceptors. The complexes crystallize in a mixed-stacked structure. The electronic state of the complexes has been investigated by combining structural geometry information of the acceptors with vibrational spectroscopy data. The complexes were found to possess neutral ground states. The difference between the donor oxidation potential and the acceptor reduction potential (ΔE) also supports this designation of their electronic states. The CT absorption energy shows a linear correlation with ΔE, which is expected for CT complexes in their neutral ground states. The frontier orbitals of the porphyrin donor that participate in the CT interactions have been examined by calculating the overlap integral between the donor occupied molecular orbitals and acceptor LUMO in the complexes. In the H2(tmp) and H2(tpp) complexes, a2u- and a1u-type porphyrin HOMO and next-HOMO, respectively, are suggested to both be contributors to the establishment of π–π* CT interactions and formation of the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kurreck H, Huber M (1995) Angew Chem Int Ed 34:849–866

    Article  CAS  Google Scholar 

  2. Hayashi T, Ogoshi H (1997) Chem Soc Rev 26:355–364

    Article  CAS  Google Scholar 

  3. Khandelwal SC, Roebber JL (1975) Chem Phys Lett 34:355

    Article  CAS  Google Scholar 

  4. Miller JS, Calabrese JC, McLean RS, Epstein AJ (1992) Adv Mater 4:498

    Article  CAS  Google Scholar 

  5. Sugiura K, Mikami S, Tanaka T, Sawada M, Manson JL, Miller JS, Sakata Y (1997) Chem Lett 1071–1072

  6. Böhm A, Vazquez C, McLean RS, Calabrese JC, Kalm SE, Manson JL, Epstein AJ, Miller JS (1996) Inorg Chem 35:3083–3088

    Article  Google Scholar 

  7. Sugiura K, Arif AM, Rittenberg DK, Schweizer J, Öhrstom L, Epstein AJ, Miller JS (1997) Chem Eur J 3:138–142

    Article  CAS  Google Scholar 

  8. Brandon EJ, Arif AM, Burkhart BM, Miller JS (1998) Inorg Chem 37:2792–2798

    Article  CAS  Google Scholar 

  9. Sugiura K, Mikami S, Johnson MT, Miller JS, Iwasaki K, Umishita K, Hino S, Sakata Y (1999) Chem Lett 925–926

  10. Rittenberg DK, Miller JS (1999) Inorg Chem 38:4838–4848

    Article  CAS  Google Scholar 

  11. Johnson MT, Arif AM, Miller JS (2000) Eur J Inorg Chem 1781–1787

  12. Hibbs W, Rittenberg DK, Sugiura K, Burkhart BM, Morin BG, Arif AM, Liable-Sands L, Rheingold AL, Sundaralingam M, Epstein AJ, Miller JS (2001) Inorg Chem 40:1915–1925

    Article  CAS  Google Scholar 

  13. Dawe LN, Miglioi J, Turnbow L, Taliaferro ML, Shum WW, Bagnato JD, Zakharov LN, Rheingold AL, Arif AM, Fourmigué M, Miller JS (2005) Inorg Chem 44:7530–7539

    Article  CAS  Google Scholar 

  14. Pace LJ, Ulman A, Ibers JA (1982) Inorg Chem 21:199–207

    Article  CAS  Google Scholar 

  15. Olmstead MM, de Bettencourt-Dias A, Lee HM, Pham D, Balch AL (2003) Dalton Trans 3227–3232

  16. Binstead RA, Crossley MJ, Hush NS (1991) Inorg Chem 30:1259–1264

    Article  CAS  Google Scholar 

  17. Gebauer A, Dawson DY, Arnold J (2000) J Chem Soc Dalton Trans 111–112

  18. Fajer J, Borg DC, Forman A, Dolphin D, Felton RH (1970) J Am Chem Soc 92:3451–3459

    Article  CAS  Google Scholar 

  19. Gasyna Z, Stillman MJ (1990) Inorg Chem 29:5101–5109

    Article  CAS  Google Scholar 

  20. Pace LJ, Martinsen J, Ulman A, Hoffman BM, Ibers JA (1983) J Am Chem Soc 105:2612–2620

    Article  CAS  Google Scholar 

  21. Newcomb TP, Godfrey MR, Hoffman BM, Ibers JA (1989) J Am Chem Soc 111:7078–7084

    Article  CAS  Google Scholar 

  22. Newcomb TP, Godfrey MR, Hoffman BM, Ibers JA (1990) Inorg Chem 29:223–228

    Article  CAS  Google Scholar 

  23. Rosa A, Bawrends EJ (1993) Inorg Chem 32:5637–5639

    Article  CAS  Google Scholar 

  24. Mochida T, Hasegawa T, Kagoshima S, Sugiura S, Iwasa Y (1997) Synth Met 86:1797–1798

    Article  CAS  Google Scholar 

  25. Johnstone RAW, Nunes MLPG, Pereira MM, d`A Rocha Gonzalves AM, Serra AC (1996) Heterocycles 43:1423–1437

    Article  CAS  Google Scholar 

  26. SIR 2004, Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Spagna R (2005) J Appl Crystallogr 38:381–388

    Article  CAS  Google Scholar 

  27. CrystalStructure4.0™: Crystal Structure Analysis Package, Rigaku Corporation (2000–2010). Tokyo 196-8666, Japan

  28. Crystal and Electronic Structure Analyzer (CAESAR). North Carolina State University. Prime Color Software, Inc. (1998). Cary, North Carolina, USA

  29. Olejnik Z, Lis T, Vogt A, Woloweic S, Skar Zewski J (2000) J Inclusion Phenom Macrocyclic Chem 38:221–232

    Article  CAS  Google Scholar 

  30. Weissbuch I, Torbeev VY, Leiserowitz L, Lahav M (2005) Angew Chem Int Ed 44:3226–3229

    Article  CAS  Google Scholar 

  31. Nie Q, Wang J, Wang Y, Bao Y (2007) Chin J Chem Eng 15:648–653

    Article  CAS  Google Scholar 

  32. Chen J, Wang J, Ulrich J, Yin Q, Xue L (2008) Cryst Growth Des 8:1490–1494

    Article  CAS  Google Scholar 

  33. Kistenmacher TJ, Emge TJ, Bloch AN, Cowan DO (1982) Acta Crystallogr B38:1193–1199

    CAS  Google Scholar 

  34. Wiygul FM, Ferraris JP, Emge TJ, Kistenmacher TJ (1981) Mol Cryst Liq Cryst 78:279–293

    Article  CAS  Google Scholar 

  35. Emge TJ, Wiygul FM, Ferraris JP, Kistenmacher TJ (1981) Mol Cryst Liq Cryst 78:295–310

    Article  CAS  Google Scholar 

  36. Emge TJ, Maxfield M, Cowan DO, Kistenmacher TJ (1981) Mol Cryst Liq Cryst 65:161–178

    Article  CAS  Google Scholar 

  37. Metzger RM, Heimer NE, Gundel D, Sixl H, Harms RH, Keller HJ, Nothe D, Wehe D (1982) J Chem Phys 77:6203–6215

    Article  CAS  Google Scholar 

  38. Chappell JS, Bloch AN, Bryden WA, Maxfield M, Peohler TO, Cowan DO (1981) J Am Chem Soc 103:2442–2443

    Article  CAS  Google Scholar 

  39. Casellas H, de Caro D, Valade L, Fraxedas J (2002) New J Chem 26:915–919

    Article  CAS  Google Scholar 

  40. Caillieux S, de Caro D, Valade L, Basso-Bert M, Faulmann C, Malfant I, Casellas H, Ouahab L, Fraxedas J, Zwick A (2003) J Mater Chem 13:2931–2936

    Article  CAS  Google Scholar 

  41. Chi X, Besnard C, Thorsmolle VK, Butko VY, Taylor AJ, Siegrist T, Ramirez AP (2004) Chem Mater 16:5751–5755

    Article  CAS  Google Scholar 

  42. Medjanik K, Perkert S, Naghavi S, Rudloff M, Solovyeva V, Chercka D, Huth M, Nepijko SA, Methfessel T, Felser C, Baumgarten M, Mullen K, Elmers HJ, Schonhense G (2010) Phys Rev B 82:245419

    Article  Google Scholar 

  43. Thomas TJ, Wiygul FM, Chappell JS, Bloch AN, Ferraris JP, Cowan DO, Kistenmacher TJ (1982) Mol Cryst Liq Cryst 87:137–161

    Article  Google Scholar 

  44. Meneghetti M, Pecile C (1986) J Chem Phys 84:4149–4162

    Article  CAS  Google Scholar 

  45. Torrance JB, Vazquez JE, Mayerle JJ, Lee VY (1981) Phys Rev Lett 46:253–257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research (Priority Area of Molecular Degrees of Freedom) and by the Global-COE program (Project No. B01: Catalysis as the Basis for Innovation in Materials Science) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamotsu Inabe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 425 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jose-Larong, J.F.F., Takahashi, Y. & Inabe, T. Charge-transfer complexes of meso-substituted porphines. Struct Chem 24, 113–122 (2013). https://doi.org/10.1007/s11224-012-0035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0035-x

Keywords

Navigation