Skip to main content
Log in

Global and Local Features Based Classification for Bleed-Through Removal

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

The text on one side of historical documents often seeps through and appears on the other side, so the bleed-through is a common problem in historical document images. It makes the document images hard to read and the text difficult to recognize. To improve the image quality and readability, the bleed-through has to be removed. This paper proposes a global and local features extraction based bleed-through removal method. The Gaussian mixture model is used to get the global features of the images. Local features are extracted by the patch around each pixel. Then, the extreme learning machine classifier is utilized to classify the scanned images into the foreground text and the bleed-through component. Experimental results on real document image datasets show that the proposed method outperforms the state-of-the-art bleed-through removal methods and preserves the text strokes well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dubois, E., & Pathak, A. (2001). Reduction of bleed-through in scanned manuscript documents. In Proceedings of image processing, image quality, image capture systems conference (pp. 177–180).

  2. Tonazzini, A., Bedini, L., & Salerno, E. (2004). Independent component analysis for document restoration. Document Analysis and Recognition, 7(1), 17–27.

    Google Scholar 

  3. Tonazzini, A., Bedini, L., & Salerno, E. (2006). A Markov model for blind image separation by a mean-field em algorithm. IEEE Transactions on Image Processing, 15(2), 473–482.

    Article  MathSciNet  Google Scholar 

  4. Rowley-Brooke, R., Pitie, F., & Kokaram, A. (2013). A non-parametric framework for document bleed-through removal. In Proceedings of IEEE conference on computer vision and pattern recognition (Vol. 9, pp. 2954–2960).

  5. Wolf, C. (2009). Document ink bleed-through removal with two hidden Markov random fields and a single observation field. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3), 431–447.

    Article  Google Scholar 

  6. Wolf, C., & Doermann, D. (2002). Binarization of low quality text using a Markov random field model. In Proceedings of international conference on pattern recognition (Vol. 3, pp. 160–163).

  7. Liu, Y., & Srihari, S. N. (1997). Document image binarization based on texture features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5), 540–544.

    Article  Google Scholar 

  8. Solihin, Y., & Leedham, C. G. (1999). Integral ratio: A new class of global thresholding techniques for handwriting images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(8), 761–768.

    Article  Google Scholar 

  9. Lelore, T., & Bouchara, F. (2011). Super-resolved binarization of text based on the FAIR algorithm. In Proceedings of international conference on document analysis and recognition (Vol. 18, No. 21, pp. 839–843).

  10. Su, B., Lu, S., & Tan, C. L. (2010). Binarization of historical document images using the local maximum and minimum. In Proceedings of international workshop on document analysis systems (pp. 159–166).

  11. Lu, S., Su, B., & Tan, C. L. (2010). Document image binarization using background estimation and stroke edges. International Journal on Document Analysis and Recognition, 13(4), 303–314.

    Article  Google Scholar 

  12. Moghaddam, R. F., & Cheriet, M. (2012). Adotsu: An adaptive and parameterless generalization of otsu’s method for document image binarization. Pattern Recognition, 45(6), 2419–2431.

    Article  Google Scholar 

  13. Nafchi, H. Z., Moghaddam, R. F., & Cheriet, M. (2013). Historical document binarization based on phase information of images. In Proceedings of computer vision (pp. 1–12).

  14. Gatos, B., Pratikakis, I., & Perantonis, S. J. (2006). Adaptive degraded document image binarization. Pattern Recognition, 39(3), 317–327.

    Article  MATH  Google Scholar 

  15. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man and Cybernetics, 9(1), 62–66.

    Article  MathSciNet  Google Scholar 

  16. Rosenfeld, A., & Smith, R. C. (1981). Thresholding using relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(5), 598–606.

    Article  Google Scholar 

  17. Niblack, W. (1985). An introduction to digital image processing. Graphics Programming and Theory, 25(4), 72.

    Google Scholar 

  18. Sauvola, J., & Pietikinen, M. (2000). Adaptive document image binarization. Pattern Recognition, 33(2), 225–236.

    Article  Google Scholar 

  19. Mukherjee, D., Wu, Q. M. J., & Nguyen, T. M. (2014). Gaussian mixture model with advanced distance measure based on support weights and histogram of gradients for background suppression. IEEE Transactions on Industrial Informatics, 10(2), 1086–1096.

    Article  Google Scholar 

  20. Greenspan, H., Goldberger, J., & Mayer, A. (2004). Probabilistic space-time video modeling via piecewise GMM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3), 384–396.

    Article  Google Scholar 

  21. Carson, C., Belongie, S., Greenspan, H., & Malik, J. (1999). Blobworld: Image segmentation using expectation-maximization and its application to image querying. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(8), 1026–1038.

    Article  Google Scholar 

  22. Pernkopf, F., & Bouchaffra, D. (2005). Genetic-based EM algorithm for learning Gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1344–1348.

    Article  Google Scholar 

  23. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1), 489–501.

    Article  Google Scholar 

  24. Dong, Y., & Xu, S. (2007). A new directional weighted median filter for removal of random-valued impulse noise. IEEE Signal Processing Letters, 14(3), 193–196.

    Article  Google Scholar 

  25. Lee, D. S. (2005). Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 827–832.

    Article  Google Scholar 

  26. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: A new learning scheme of feedforward neural networks. In Proceedings of international joint conference on neural networks (pp. 985–990).

  27. Rowley-Brooke, R., Pitie, F., & Kokaram, A. (2012). A ground truth bleed-through document image database. Theory and Practice of Digital Libraries, 7489, 185–196.

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Natural Science Fund of China for Distinguished Young Scholars (No. 61325007) and the National Natural Science Fund of China for International Cooperation and Exchanges (No. 61520106001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Lin, H., Li, S. et al. Global and Local Features Based Classification for Bleed-Through Removal. Sens Imaging 17, 9 (2016). https://doi.org/10.1007/s11220-016-0134-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-016-0134-7

Keywords

Navigation