Skip to main content

Advertisement

Log in

Orbital Observations of Dust Lofted by Daytime Convective Turbulence

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of dust in modulating atmospheric processes is complex and not always well understood. We present a review of orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures produced by daytime convective turbulence called “dust devils”. On Earth, dust devils are thought to contribute only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the planet’s atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that martian dust devil studies may inform future studies of convectively-lofted dust on Earth.

As on Earth, martian dust devils form most commonly when the insolation reaches its daily and seasonal peak and where a source of loose dust is plentiful. However this pattern is modulated by variations in weather, albedo, or topography, which produce turbulence that can either enhance or suppress dust devil formation. For reasons not well understood, when measured from orbit, martian dust devil characteristics (dimensions, and translational and rotational speeds) are often much larger than those measured from the ground on both Earth and Mars. Studies connecting orbital observations to those from the surface are needed to bridge this gap in understanding. Martian dust devils have been used to remotely probe conditions in the PBL (e.g., CBL depth, wind velocity); the same could be done in remote locations on Earth. Finally, martian dust devils appear to play a major role in the dust cycle, waxing and waning in relative importance and spatial patterns of occurrence with the planet’s orbital state. Orbital studies of terrestrial dust devils would provide a basis for comparative planetology that would broaden the understanding of these dusty vortices on both planets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ADEOS:

Advanced Earth Observing Satellite

AOT:

aerosol optical thickness

ASTER:

Advanced Spaceborne Thermal Emission Spectrometer

AVHRR:

Advanced Very High Resolution Radiometer

CALIOP:

Cloud-Aerosol Lidar with Orthogonal Polarization

CALIPSO:

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

CBL:

convective boundary layer

CTX:

Context Camera

DD:

dust devil

DOD:

dust optical depth

DOT:

dust optical thickness

EPF:

emission phase function

EY:

Earth year

FOV:

field of view

GCM:

global circulation model

GLAS:

Geoscience Laser Altimeter System

GLI:

Global Imager

GOCART:

Goddard Chemistry Aerosol Radiation and Transport

HiRISE:

High Resolution Imaging Science Experiment

HRSC:

High Resolution Stereo Camera

ICESat:

Ice, Cloud and land Elevation Satellite

IR:

infrared

IRIS:

Infrared Interferometric Spectrometer

IRTM:

Infrared Thermal Mapper

LITE:

Lidar In-Space Technology Experiment

LW:

long wave

MARCI:

Mars Reconnaissance Orbiter Mars Color Imager

MCS:

Mars Climate Sounder

MEX:

Mars Express

MGS:

Mars Global Surveyor

MOC NA:

Mars Orbiter Camera Narrow Angle

MOC WA:

Mars Orbiter Camera Wide Angle

MODIS:

Moderate-resolution Imaging Spectro-radiometer

MOLA:

Mars Orbiter Laser Altimeter

MRO:

Mars Reconnaissance Orbiter

MSG:

Meteosat Second Generation

MSL:

Mars Science Laboratory Multi-angle Imaging Spectro-Radiometer

MY:

Mars Year

MVIRI:

Meteosat Visible Infra-Red Imager

NOAA:

National Oceanic and Atmospheric Administration

ODY:

Mars Odyssey

PBL:

planetary boundary layer

POLDER:

Polarization and Directionality of the Earth’s Reflectances

PSD:

particle size distribution

SeaWiFS:

Sea-viewing Wide Field of view Sensor

SRC:

Super-resolution Camera

SEVIRI:

Spinning Enhanced Visible Infra-Red Imager

SPICAM:

Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars

SW:

short wave

TES:

Thermal Emission Spectrometer

THEMIS IR:

Thermal Emission Imaging System, Infrared camera

THEMIS VIS:

THEMIS Visible camera

TIROS:

Television and Infra-Red Observation Satellite

UV:

ultraviolet

VCS-MA:

Vidicon Camera System—Medium Angle

VIS: TOMS:

Total Ozone Mapping Spectrometer Visual Imaging Subsystems

VL1:

Viking Lander 1

VL2:

Viking Lander 2

VO1:

Viking Orbiter 1

VO2:

Viking Orbiter 2

References

  • A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, O. Schulz, Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus B 61, 340–353 (2009). doi:10.1111/j.1600-0889.2008.00384.x

    Article  ADS  Google Scholar 

  • M.R. Balme, P.L. Whelley, R. Greeley, Mars: dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophys. Res. 108, 5086 (2003). doi:10.1029/2003JE002096

    Article  Google Scholar 

  • M. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44, RG3003 (2006). doi:10.1029/2005RG000188

    Article  ADS  Google Scholar 

  • M.R. Balme, A. Pathare, S.M. Metzger, M.C. Towner, S.R. Lewis, A. Spiga, L. Fenton, N.O. Renno, H.M. Elliott, F.A. Saca, T. Michaels, P. Russell, J. Verdasca, Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on Mars and Earth. Icarus 221, 632–645 (2012). doi:10.1016/j.Icarus2012.08.021

    Article  ADS  Google Scholar 

  • J.R. Banks, H.E. Brindley, Evaluation of MSG-SEVIRI mineral dust retrieval products over North Africa and the Middle East. Remote Sens. Environ. 128, 58–73 (2013). doi:10.1016/j.rse.2012.07.017

    Article  Google Scholar 

  • S. Basu, M.I. Richardson, R.J. Wilson, Simulation of the Martian dust cycle with the GFDL Mars GCM. J. Geophys. Res. 109, E11006 (2004). doi:10.1029/2004JE002243

    Article  ADS  Google Scholar 

  • S. Basu, J. Wilson, M.I. Richardson, A. Ingersoll, Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM. J. Geophys. Res.-Planets 111 (2006). doi:10.1029/2005je002660

  • F. Bell, Dust devils and aviation, Meteorol. Note 27, Commonwealth of Australia, Bureau of Meteorology (1967) p. 10

  • J.F. Bell, M.J. Wolff, M.C. Malin, W.M. Calvin, B.A. Cantor, M.A. Caplinger, R.T. Clancy, K.S. Edgett, L.J. Edwards, J. Fahle, F. Ghaemi, R.M. Haberle, A. Hale, P.B. James, S.W. Lee, T. McConnochie, E. Noe Dobrea, M.A. Ravine, D. Schaeffer, K.D. Supulver, P.C. Thomas, Mars Reconnaissance Orbiter Mars Color Imager (MARCI): Instrument description, calibration, and performance. J. Geophys. Res. 114 (2009). doi:10.1029/2008JE003315

  • N. Bellouin, A. Jones, J. Haywood, S.A. Christopher, Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model. J. Geophys. Res. 113, D10205 (2008). doi:10.1029/2007JD009385

    Article  ADS  Google Scholar 

  • S. Berthier, P. Chazette, P. Couvert, J. Pelon, F. Dulac, F. Thieuleux, C. Moulin, T. Pain, Desert dust aerosol columnar properties over ocean and continental Africa from Lidar In-Space Technology Experiment (LITE) and meteosat synergy. J. Geophys. Res. 111, D21202 (2006). doi:10.1029/2005JD006999

    Article  ADS  Google Scholar 

  • K.K. Biener, P.E. Geissler, A.S. McEwen, C. Leovy, Observations of martian dust devils in MOC wide angle camera images, in Lunar Planet. Sci. Conf. XXXIII, League City, TX (2002) Abst. #2004

    Google Scholar 

  • O. Boucher, D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S.K. Satheesh, S. Sherwood, B. Stevens, X.Y. Zhang, in Climate Change 2013: The Physical Science Basis, ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Cambridge University Press, New York, 2013), p. 571. doi:10.1017/CBO9781107415324.016

    Google Scholar 

  • G.A. Briggs, W.A. Baum, J. Barnes, Viking Orbiter imaging observations of dust in the Martian atmosphere. J. Geophys. Res. 84, 2795–2820 (1979). doi:10.1029/JB084iB06p02795

    Article  ADS  Google Scholar 

  • B.A. Cantor, MOC observations of the 2001 Mars planet-encircling dust storm. Icarus 186(1), 60–96 (2007). doi:10.1016/j.icarus.2006.08.019

    Article  ADS  Google Scholar 

  • B.A. Cantor, P.B. James, M. Caplinger, M.J. Wolff, Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106, 23653 (2001). doi:10.1029/2000JE001310

    Article  ADS  Google Scholar 

  • B. Cantor, M. Malin, K.S. Edgett, Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season. J. Geophys. Res. 107(E3), 5014 (2002). doi:10.1029/2001JE001588

    Article  Google Scholar 

  • B.A. Cantor, K.M. Kanak, K.S. Edgett, Mars Orbiter camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res. 111, E12002 (2006). doi:10.1029/2006JE002700

    Article  ADS  Google Scholar 

  • B.A. Cantor, P.B. James, W.M. Calvin, MARCI and MOC observations of the atmosphere and surface cap in the north polar region of Mars. Icarus 208, 61–81 (2010). doi:10.1016/j.icarus.2010.01.032

    Article  ADS  Google Scholar 

  • D. Carrer, X. Ceamanos, B. Six, J.-L. Roujean, AERUS-GEO: a newly available satellite-derived aerosol optical depth product over Europe and Africa. Geophys. Res. Lett. 41, 7731–7738 (2014). doi:10.1002/2014GL061707

    Article  ADS  Google Scholar 

  • I. Chiapello, C. Moulin, J.M. Prospero, Understanding the long-term variability of African dust transport across the Atlantic as recorded in both Barbados surface concentrations and large-scale TOMS optical thickness. J. Geophys. Res. 110, D18S10 (2005). doi:10.1029/2004JD005132

    Article  ADS  Google Scholar 

  • I. Chiapello, Dust observations and climatology, in Mineral Dust: A Key Player in the Earth System, ed. by P. Knippertz, J.-B.W. Stuut (Springer, Dordrecht, 2014), p. 149. doi:10.1007/978-94-017-8978-3

    Google Scholar 

  • M. Chin, T. Diehl, O. Dubovik, T.F. Eck, B.N. Holben, A. Sinyuk, D.G. Streets, Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements. Ann. Geophys. 27, 3439–3464 (2009). doi:10.5194/angeo-27-3439-2009

    Article  ADS  Google Scholar 

  • M. Chin, T. Diehl, Q. Tan, J.M. Prospero, R.A. Kahn, L.A. Remer, H. Yu, A.M. Sayer, H. Bian, I.V. Geogdzhayev, B.N. Holben, S.G. Howell, B.J. Huebert, N.C. Hsu, D. Kim, T.L. Kucsera, R.C.L.M.I. Mishchenko, X. Pan, P.K. Quinn, G.L. Schuster, D.G. Streets, S.A. Strode, O. Torres, X.-P. Zhao, Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmos. Chem. Phys. 14, 3657–3690 (2014). doi:10.5194/acp-14-3657-2014

    Article  ADS  Google Scholar 

  • D.S. Choi, C.M. Dundas, Measurements of martian dust devil winds with HiRISE. Geophys. Res. Lett. 38 (2011). doi:10.1029/2011GL049806

  • P.R. Christensen, Regional dust deposits on Mars: physical properties, age, and history. J. Geophys. Res. 91(B3), 3533–3545 (1986). doi:10.1029/JB091iB03p03533

    Article  ADS  Google Scholar 

  • P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85 (2004). doi:10.1007/978-0-306-48600-5_3

    Article  ADS  Google Scholar 

  • R.T. Clancy, B.J. Sandor, M.J. Wolff, P.R. Christensen, M.D. Smith, J.C. Pearl, B.J. Conrath, R.J. Wilson, An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105, 9553–9571 (2000). doi:10.1029/1999JE001089

    Article  ADS  Google Scholar 

  • D.S. Colburn, J.B. Pollack, R.M. Haberle, Diurnal variations in optical depth at Mars. Icarus 79, 159–189 (1989). doi:10.1016/0019-1035(89)90114-0

    Article  ADS  Google Scholar 

  • S.M. Cowie, P. Knippertz, J.H. Marsham, Are vegetation-related roughness changes the cause of the recent decrease in dust emission from the Sahel? Geophys. Res. Lett. 40, 1868–1872 (2013). doi:10.1002/grl.50273

    Article  ADS  Google Scholar 

  • G.E. Cushing, T.N. Titus, P.R. Christensen, THEMIS VIS and IR observations of a high-altitude martian dust devil. Geophys. Res. Lett. 32, 23 (2005). doi:10.1029/2005GL024478

    Article  Google Scholar 

  • J.W. Deardorff, Observed characteristics of the outer layer, in Short Course on the Planetary Boundary Layer, ed. by A.K. Blackadar (Am. Meteorol. Soc., Boston, 1978), 101 pp.

    Google Scholar 

  • K.S. Edgett, M.C. Malin, Martian dust raising and surface albedo controls: thin, dark (and sometimes bright) streaks and dust devils in MGS MOC high resolution images, in Lunar Planet. Sci. Conf. XXXI, Houston, TX (2000) Abst. #1073

    Google Scholar 

  • A.T. Evan, J. Dunion, J.A. Foley, A.K. Heidinger, C.S. Velden, New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett. 33, L19813 (2006). doi:10.1029/2006GL026408

    Article  ADS  Google Scholar 

  • A.T. Evan, S. Mukhopadhyay, African dust over the northern tropical Atlantic: 1955–2008. J. Appl. Meteorol. Climatol. 49, 2213–2229 (2010). doi:10.1175/2010JAMC2485.1

    Article  ADS  Google Scholar 

  • A.T. Evan, C. Flamant, S. Fiedler, O. Doherty, An analysis of aeolian dust in climate models. Geophys. Res. Lett. 41, 5996–6001 (2014). doi:10.1002/2014GL060545

    Article  ADS  Google Scholar 

  • A.A. Fedorova, F. Montmessin, A. Rodin, O.I. Korablev, A. Määttänen, L. Maltagliati, J.-L. Bertaux, Evidence for a bimodal size distribution for the suspended aerosol particles on Mars. Icarus 231, 239–260 (2014). doi:10.1016/j.icarus.2013.12.015

    Article  ADS  Google Scholar 

  • L.K. Fenton, J.C. Pearl, T.Z. Martin, Mapping Mariner 9 dust opacities. Icarus 130, 115–124 (1997). doi:10.1006/icar.1997.5810

    Article  ADS  Google Scholar 

  • L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246–262 (2015). doi:10.1016/j.icarus2015.07.028

    Article  ADS  Google Scholar 

  • F. Ferri, P.H. Smith, M. Lemmon, N.O. Rennó, Dust devils as observed by Mars Pathfinder. J. Geophys. Res. 108 (2003). doi:10.1029/2000JE001421

  • J.A. Fisher, M.I. Richardson, C.E. Newman, M.A. Szwast, C. Graf, S. Basu, S.P. Ewald, A.D. Toigo, R.J. Wilson, A survey of martian dust devil activity using Mars global surveyor Mars orbiter camera images. J. Geophys. Res. 110, E03004 (2005). doi:10.1029/2003JE002165

    ADS  Google Scholar 

  • D.E. Fitzjarrald, A field investigation of dust devils. J. Appl. Meteorol. 12, 808–813 (1973). doi:10.1175/1520-0450(1973)012<0808:AFIODD>2.0.CO;2

    Article  ADS  Google Scholar 

  • W.D. Flower, Sand devils. London Meteorol. Off. Prof. Notes. 5, No. 71 (1936)

  • G.J. Flynn, The meteoritic contribution to dust and aerosols in the atmosphere of Mars, in Workshop on the Martian Surface and Atmosphere Through Time, Boulder, CO, USA, Report No. NASA-CR-190418, pp. 51–52 (1992)

  • G.R. Foltz, M.J. McPhaden, Trends in Saharan dust and tropical Atlantic climate during 1980–2006. Geophys. Res. Lett. 35, L20706 (2008). doi:10.1029/2008GL035042

    Article  ADS  Google Scholar 

  • F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read, J.-P. Huot, Improved general circulation models of the martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104(E10), 24155–24175 (1999). doi:10.1029/1999JE001025

    Article  ADS  Google Scholar 

  • J.R. Garratt, The Atmospheric Boundary Layer (Cambridge Univ. Press, New York, 1994)

    Google Scholar 

  • S. Gassó, A.F. Stein, Does dust from Patagonia reach the sub-Antarctic Atlantic Ocean? Geophys. Res. Lett. 34, L01801 (2007). doi:10.1029/2006GL027693

    Article  ADS  Google Scholar 

  • A. Gibbons, F. Yang, P. Mlsna, P. Geissler, Automated procedures for detecting martian dust devils, in Lunar Planet. Sci. Con. XXXVI, League City, TX (2005) Abst. #2005

    Google Scholar 

  • P.J. Gierasch, R.M. Goody, A model of a Martian Great dust storm. J. Atmos. Sci. 30(2), 169–179 (1973). doi:10.1175/1520-0469(1973)030<0169:AMOAMG>2.0.CO;2

    Article  ADS  Google Scholar 

  • D.A. Gillette, P.C. Sinclair, Estimation of suspension of alkaline material by dust in the United States. Atmos. Environ. 24A(5), 1135–1142 (1990). doi:10.1016/0960-1686(90)90078-2

    Article  ADS  Google Scholar 

  • P. Ginoux, J.M. Prospero, T.E. Gill, N.C. Hsu, M. Zhao, global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50, RG3005 (2012). doi:10.1029/2012RG000388

    Article  ADS  Google Scholar 

  • A. Goudie, N. Middleton, Desert Dust in the Global System (Springer, Berlin, 2006)

    Google Scholar 

  • D. Grassi, V. Formisano, F. Forget, C. Fiorenza, N.I. Ignatiev, A. Maturilli, L.V. Zasova, The martian atmosphere in the region of Hellas basin as observed by the planetary Fourier spectrometer (PFS-MEX). Planet. Space Sci. 55, 1346–1357 (2007). doi:10.1016/j.pss.2006.12.006

    Article  ADS  Google Scholar 

  • R. Greeley, J. Iversen, Wind as Geologic Process on Earth, Mars, Venus, and Titan (Cambridge Univ. Press, New York, 1985)

    Book  Google Scholar 

  • R. Greeley, M.R. Balme, J.D. Iversen, S.M. Metzger, R. Mickelson, J. Phoreman, B. White, Martian dust devils: laboratory simulations of particle threshold. J. Geophys. Res. 108 (2003). doi:10.1029/2002JE001987

  • R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res. 111, E12S09 (2006). doi:10.1029/2006JE002743

    ADS  Google Scholar 

  • R. Greeley, D.A. Waller, N.A. Cabrol, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, M. Pendeleton Hoffer, S.D. Thompson, P.L. Whelley, Gusev crater, Mars: observations of three dust devil seasons. J. Geophys. Res. 115, E00F02 (2010). doi:10.1029/2010JE003608

    Article  ADS  Google Scholar 

  • S.D. Guzewich, A.D. Toigo, L. Kulowski, H. Wang, Mars Orbiter Camera climatology of textured dust storms. Icarus 258, 1–13 (2015). doi:10.1016/j.icarus.2015.06.023

    Article  ADS  Google Scholar 

  • R.M. Haberle, M.A. Kahre, J.R. Murphy, Role of dust devils and orbital precession in closing the Martian dust cycle. Geophys. Res. Lett. 33, L19504 (2006). doi:10.1029/2006GL026188

    Article  Google Scholar 

  • R. Hanel, B. Conrath, W. Hovis, V. Kunde, P. Lowman, W. Maguire, J. Pearl, J. Pirraglia, C. Prabhakara, B. Schlachman, G. Levin, P. Straat, T. Burke, Investigation of the Martian environment by infrared spectroscopy on Mariner 9. Icarus 17, 423–442 (1972). doi:10.1016/0019-1035(72)90009-7

    Article  ADS  Google Scholar 

  • N.G. Heavens, J.L. Benson, D.M. Kass, A. Kleinbohl, W.A. Abdou, D.J. McCleese, M.I. Richardson, J.T. Schofield, J.H. Shirley, P.M. Wolkenberg, Water ice clouds over the Martian tropics during northern summer. Geophys. Res. Lett. 37 (2010). doi:10.1029/2010gl044610

  • N.G. Heavens, D.J. McCleese, M.I. Richardson, D.M. Kass, A. Kleinböhl, J.T. Schofield, Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: 2. Implications of the thermal structure and aerosol distributions for the mean meridional circulation. J. Geophys. Res., Planets 116, E01010 (2011a). doi:10.1029/2010JE003713

    ADS  Google Scholar 

  • N.G. Heavens, M.I. Richardson, A. Kleinbohl, D.M. Kass, D.J. McCleese, W. Abdou, J.L. Benson, J.T. Schofield, J.H. Shirley, P.M. Wolkenberg, Vertical distribution of dust in the Martian atmosphere during northern spring and summer: high-altitude tropical dust maximum at northern summer solstice. J. Geophys. Res., Planets 116 (2011b). doi:10.1029/2010JE003692

  • N.G. Heavens, B.A. Cantor, P.O. Hayne, D.M. Kass, A. Kleinböhl, D.J. McCleese, S. Piqueux, J.T. Schofield, J.H. Shirley, Extreme detached dust layers near Martian volcanoes: evidence for dust transport by mesoscale circulations forced by high topography. Geophys. Res. Lett. 42, 3730–3738 (2015). doi:10.1002/2015GL064004

    Article  ADS  Google Scholar 

  • J.R. Herman, P.K. Bhartia, O. Torres, C. Hsu, C. Seftor, E. Celarier, Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res. 102, 16911 (1997). doi:10.1029/96JD03680

    Article  ADS  Google Scholar 

  • M. Herman, J.-L. Deuzé, A. Marchand, B. Roger, P. Lallart, Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model. J. Geophys. Res. 110, D10S02 (2005). doi:10.1029/2004JD004798

    Article  ADS  Google Scholar 

  • G.D. Hess, K.T. Spillane, Characteristics of dust devils in Australia. J. Appl. Meteorol. 29, 498–506 (1990). doi:10.1175/1520-0450(1990)029<0498:CODDIA>2.0.CO;2

    Article  ADS  Google Scholar 

  • R. Hesse, Short-lived and long-lived dust devil tracks in the coastal desert of southern Peru. Aeolian Res. 5, 101–106 (2012). doi:10.1016/j.aeolia.2011.10.003

    Article  ADS  Google Scholar 

  • D.P. Hinson, M. Pätzold, S. Tellmann, B. Häusler, G.L. Tyler, The depth of the convective boundary layer on Mars. Icarus 198, 57–66 (2008). doi:10.1016/j.icarus.2008.07.003

    Article  ADS  Google Scholar 

  • D.P. Hinson, H. Wang, Further observations of regional dust storms and baroclinic eddies in the northern hemisphere of Mars. Icarus 206, 290–305 (2010). doi:10.1016/j.icarus.2009.08.019

    Article  ADS  Google Scholar 

  • D.P. Hinson, H. Wang, M.D. Smith, A multi-year survey of dynamics near the surface in the northern hemisphere of Mars: short-period baroclinic waves and dust storms. Icarus 219, 307–320 (2012). doi:10.1016/j.icarus.2012.03.001

    Article  ADS  Google Scholar 

  • D.P. Hinson, S.W. Asmar, D.S. Kahan, V. Akopian, R.M. Haberle, A. Spiga, J.T. Schofield, A. Kleinböhl, W.A. Abdou, S.R. Lewis, M. Paik, S.G. Maalouf, Initial results from radio occultation measurements with the Mars Reconnaissance Orbiter: a nocturnal mixed layer in the tropics and comparisons with polar profiles from the Mars Climate Sounder. Icarus 243, 91–103 (2014). doi:10.1016/j.icarus.2014.09.019

    Article  ADS  Google Scholar 

  • N.C. Hsu, S.C. Tsay, M.D. King, J.R. Herman, Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 42(3), 557–569 (2004). doi:10.1109/TGRS.2004.824067

    Article  ADS  Google Scholar 

  • N.C. Hsu, R. Gautam, A.M. Sayer, C. Bettenhausen, C. Li, M.J. Jeong, S.-C. Tsay, B.N. Holben, Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys. 12, 8037–8053 (2012). doi:10.5194/acp-12-8037-2012

    Article  ADS  Google Scholar 

  • N.C. Hsu, M.-J. Jeong, C. Bettenhausen, A.M. Sayer, R. Hansell, C.S. Seftor, J. Huang, S.-C. Tsay, Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J. Geophys. Res., Atmos. 118, 9296–9315 (2013). doi:10.1002/jgrd.50712

    Article  ADS  Google Scholar 

  • J. Huang, C. Zhang, J.M. Prospero, African dust outbreaks: a satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J. Geophys. Res. 115, D05202 (2010). doi:10.1029/2009JD012516

    ADS  Google Scholar 

  • N. Huneeus, M. Schulz, Y. Balkanski, J. Griesfeller, J.A. Prospero, S. Kinne, S. Bauer, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, D. Fillmore, S. Ghan, P. Ginoux, A. Grini, L. Horowitz, D. Koch, M. Krol, W. Landing, X. Liu, N. Mahowald, R. Miller, J.-J. Morcrette, G. Myhre, J.E. Penner, J. Perlwitz, P. Stier, T. Takemura, C. Zender, Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 11, 7781–7816 (2011). doi:10.5194/acp-11-7781-2011

    Article  ADS  Google Scholar 

  • G.E. Hunt, P.B. James, Martian extratropical cyclones. Nature 278, 531–532 (1979). doi:10.1038/278531a0

    Article  ADS  Google Scholar 

  • R.B. Husar, J.M. Prospero, L.L. Stowe, Characterization of tropospheric aerosols over the oceans with the NOAA AVHRR optical thickness product. J. Geophys. Res. 102, 16889–16909 (1997). doi:10.1029/96JD04009

    Article  ADS  Google Scholar 

  • R.L. Ives, Behavior of dust devils. Bull. Am. Meteorol. Soc. 28, 168–174 (1947)

    Google Scholar 

  • I. Jankowiak, D. Tanré, Satellite climatology of Saharan dust outbreaks: method and preliminary results. J. Climate 5(6), 646–656 (1992). doi:10.1175/1520-0442(1992)005<0646:SCOSDO>2.0.CO;2

    Article  ADS  Google Scholar 

  • R. Jaumann, G. Neukum, T. Behnke, T.C. Duxbury, K. Eichentopf, J. Flohrer, S. van Gasselt, B. Giese, K. Gwinner, E. Hauber, H. Hoffmann, A. Hoffmeister, U. Köhler, K.-D. Matz, T.B. McCord, V. Mertens, J. Oberst, R. Pischel, D. Reiss, E. Ress, T. Roatsch, P. Saiger, F. Scholten, G. Schwarz, K. Stephan, M. Wählisch, the HRSC Co-Investigator Team, The high-resolution stereo camera (HRSC) experiment on Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci. 55, 928–952 (2007). doi:10.1016/j.pss.2006.12.003

    Article  ADS  Google Scholar 

  • B.C. Jemmett-Smith, J.H. Marsham, P. Knippertz, C.A. Gilkeson, Quantifying global dust devil occurrence from meteorological analyses. Geophys. Res. Lett. 42, 1275–1282 (2015). doi:10.1002/2015GL063078

    Article  ADS  Google Scholar 

  • R.A. Kahn, T.Z. Martin, R.W. Zurek, S.W. Lee, The Martian dust cycle, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (Univ. of Ariz. Press, Tucson, 1992), pp. 1017–1053

    Google Scholar 

  • M.A. Kahre, J.R. Murphy, R.M. Haberle, Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. 111 (2006). doi:10.1029/2005JE002588

  • K.M. Kanak, D.K. Lilly, J.T. Snow, The formation of vertical vortices in the convective boundary layer. Q. J. R. Meteorol. Soc. 126, 2789–2810 (2000). doi:10.1002/qj.49712656910

    Article  ADS  Google Scholar 

  • Y.J. Kaufman, I. Koren, L.A. Remer, D. Tanré, P. Ginoux, S. Fan, Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectrometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res. 110, D10S12 (2005). doi:10.1029/2003JD004436

    Article  ADS  Google Scholar 

  • H.H. Kieffer, B.M. Jakosky, C.W. Snyder, The planet Mars: from antiquity to the present, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 12–13

    Google Scholar 

  • A. Kleinböhl, J.T. Schofield, D.M. Kass, W.A. Abdou, C.R. Backus, B. Sen, J.H. Shirley, W.G. Lawson, M.I. Richardson, F.W. Taylor, N.A. Teanby, D.J. McCleese, Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res. 114, E10006 (2009). doi:10.1029/2009JE003358

    Article  ADS  Google Scholar 

  • J. Koch, N.O. Renno, The role of convective plumes and vortices on the global aerosol budget. Geophys. Res. Lett. 32, L18806 (2005). doi:10.1029/2005GL02342

    ADS  Google Scholar 

  • J.F. Kok, E.J.R. Parteli, T.I. Michaels, D.B. Karam, The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 10 (2012). doi:10.1088/0034-4885/75/10/106901

    Article  Google Scholar 

  • O. Korablev, V.A. Krasnopolsky, A.V. Rodin, E. Chassefière, Vertical structure of Martian dust measured by solar infrared occultations from the Phobos spacecraft. Icarus 102, 76–87 (1993). doi:10.1006/icar.1993.1033

    Article  ADS  Google Scholar 

  • J. Laskar, A.C.M. Correia, M. Gastineau, F. Joutel, B. Levrard, P. Robutel, Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004). doi:10.1016/j.icarus.2004.04.005

    Article  ADS  Google Scholar 

  • M. Legrand, C. N’doumé, I. Jankowiak, Satellite-derived climatology of the Saharan aerosol, in Proc. SPIE 2309, Passive Infrared Remote Sensing of Clouds and the Atmosphere II (1994), pp. 127–135. doi:10.1117/12.196669

    Chapter  Google Scholar 

  • M. Legrand, A. Plana-Fattori, C. N’doumé, Satellite detection of dust using the IR imagery of Meteosat: 1. Infrared difference dust index. J. Geophys. Res. 106, 18251–18274 (2001). doi:10.1029/2000JD900749

    Article  ADS  Google Scholar 

  • M.T. Lemmon, M.J. Wolff, M.D. Smith, R.T. Clancy, D. Banfield, G.A. Landis, A. Ghosh, P.H. Smith, N. Spanovich, B. Whitney, P. Whelley, R. Greeley, S. Thompson, J.F. Bell, S.W. Squyres, Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity. Science 306, 1753–1756 (2004). doi:10.1126/science.1104474

    Article  ADS  Google Scholar 

  • M.T. Lemmon, M.J. Wolff, J.F. Bell, M.D. Smith, B.A. Cantor, P.H. Smith, Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251, 96–111 (2015). doi:10.1016/j.icarus.2014.03.029

    Article  ADS  Google Scholar 

  • J. Lenoble, L. Remer, D. Tanré, Aerosol Remote Sensing (Springer, Heidelberg, 2013). doi:10.1007/978-3-642-17725-5

    Book  Google Scholar 

  • R.C. Levy, S. Mattoo, L.A. Munchak, L.A. Remer, A.M. Sayer, F. Patadia, N.C. Hsu, The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 6, 2989–3034 (2013). doi:10.5194/amt-6-2989-2013

    Article  Google Scholar 

  • S.R. Lewis, P.L. Read, B.J. Conrath, J.C. Pearl, M.D. Smith, Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period. Icarus 192, 327–347 (2007). doi:10.1016/j.icarus.2007.08.009

    Article  ADS  Google Scholar 

  • R. Lorenz, On the statistical distribution of dust devil diameters. Icarus 215, 381–390 (2011). doi:10.1016/j.icarus.2011.06.005

    Article  ADS  Google Scholar 

  • R. Lorenz, The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus 226, 964–970 (2013). doi:10.1016/j.icarus.2013.06.031

    Article  ADS  Google Scholar 

  • R.D. Lorenz, M.J. Myers, Dust devil hazard to aviation: a review of United States air accident reports. J. Meteorol. 30(298), 179–184 (2005)

    Google Scholar 

  • A. Määttänen, T. Fouchet, O. Forni, F. Forget, H. Savijärvi, B. Gondet, R. Melchiorri, Y. Langevin, V. Formisano, M. Giuranna, J.-P. Bibring, A study of the properties of a local dust storm with Mars Express OMEGA and PFS data. Icarus 201, 504–516 (2009). doi:10.1016/j.icarus.2009.01.024

    Article  ADS  Google Scholar 

  • A. Määttänen, C. Listowski, F. Montmessin, L. Maltagliati, A. Reberac, L. Joly, J.-L. Bertaux, A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations. Icarus 223, 892–941 (2013). doi:10.1016/j.icarus.2012.12.001

    Article  ADS  Google Scholar 

  • J.-B. Madeleine, F. Forget, E. Millour, T. Navarro, A. Spiga, The influence of radiatively active water ice clouds on the Martian climate. Geophys. Res. Lett. 39, L23202 (2012a). doi:10.1029/2012GL053564

    Article  ADS  Google Scholar 

  • J.-B. Madeleine, F. Forget, A. Spiga, M.J. Wolff, F. Montmessin, M. Vincendon, D. Jouglet, B. Gondet, J.-P. Bibring, Y. Langevin, B. Schmitt, Aphelion water-ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express. J. Geophys. Res., Planets 117, E00J07 (2012b). doi:10.1029/2011JE003940

    Article  ADS  Google Scholar 

  • B.A. Maher, J.M. Prospero, D. Mackie, D. Gaiero, P.P. Hesse, Y. Balkanski, Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Sci. Rev. 99, 61–97 (2010). doi:10.1016/j.earscirev.2009.12.001

    Article  ADS  Google Scholar 

  • M.C. Malin, K.S. Edgett, Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. J. Geophys. Res. 106(E10), 23429–23570 (2001). doi:10.1029/2000JE001455

    Article  ADS  Google Scholar 

  • M.C. Malin, K.S. Edgett, B.A. Cantor, M.A. Caplinger, G.E. Danielson, E.H. Jensen, M.A. Ravine, J.L. Sandoval, K.D. Supulver, An overview of the 1985–2006 Mars Orbiter Camera science investigation. Mars 5 (2010). doi:10.1555/mars.2010.0001

  • P. Markowski, C. Hannon, Multiple-Doppler radar observations of the evolution of vorticity extrema in a convective boundary layer. Mon. Weather Rev. 134, 355–374 (2006). doi:10.1175/MWR3060.1

    Article  ADS  Google Scholar 

  • B. Marticorena, B. Chatenet, J.L. Rajot, Temporal variability of mineral dust concentrations over West Africa: analyses of a pluriannual monitoring from the AMMA Sahelian Dust Transect. Atmos. Chem. Phys. 10, 8899–8915 (2010). doi:10.5194/acp-10-8899-2010

    Article  ADS  Google Scholar 

  • B. Marticorena, P. Formenti, Fundamentals of aeolian sediment transport: long-range transport of dust, in Treatise Geomorphol, vol. 11, ed. by J. Shroder, N. Lancaster, D.J. Sherman, A.C.W. Bass (Academic Press, San Diego, 2013), pp. 64–84

    Chapter  Google Scholar 

  • L.J. Martin, R.W. Zurek, An analysis of the history of dust activity on Mars. J. Geophys. Res. 98, 3221 (1993). doi:10.1029/92JE02937

    Article  ADS  Google Scholar 

  • T.Z. Martin, Thermal infrared opacity of the Mars atmosphere. Icarus 66, 2–21 (1986). doi:10.1016/0019-1035(86)90003-5

    Article  ADS  Google Scholar 

  • T.Z. Martin, M.I. Richardson, New dust opacity mapping from Viking Infrared Thermal Mapper Data. J. Geophys. Res. 98, 10941–10949 (1993). doi:10.1029/93JE01044

    Article  ADS  Google Scholar 

  • J.V. Martonchik, D.J. Diner, R. Kahn, B. Gaitley, B.N. Holben, Comparison of MISR and AERONET aerosol optical depths over desert sites. Geophys. Res. Lett. 31, L16102 (2004). doi:10.1029/2004GL019807

    Article  ADS  Google Scholar 

  • H. Masursky, R.M. Batson, J.F. McCauley, L.A. Soderblom, R.L. Wildey, M.H. Carr, D.J. Milton, D.E. Wilhelms, B.A. Smith, T.B. Kirby, J.C. Robinson, C.B. Leovy, G.A. Briggs, T.C. Duxbury, C.H. Acton Jr., B.C. Murray, J.A. Cutts, R.P. Sharp, S. Smith, R.B. Leighton, C. Sagan, J. Veverka, M. Noland, J. Lederberg, E. Levinthal, J.B. Pollack, J.T. Moore Jr., W.K. Hartmann, E.N. Shipley, G. de Vaucouleurs, M.E. Davies, Mariner 9 television reconnaissance of Mars and its satellites: preliminary results. Science 175, 294–305 (1972). doi:10.1126/science.175.4019.294

    Article  ADS  Google Scholar 

  • J.O. Mattsson, T. Nihlén, W. Yue, Observations of dust devils in a semi-arid district of southern Tunisia. Weather 48, 359–363 (1993). doi:10.1002/j.1477-8696.1993.tb05814.x

    Article  ADS  Google Scholar 

  • T. Maxworthy, A vorticity source for large-scale dust devils and other comments on naturally occurring columnar vortices. J. Atmos. Sci. 30, 1717–1722 (1973). doi:10.1175/1520-0469(1973)030<1717:AVSFLS>2.0.CO;2

    Article  ADS  Google Scholar 

  • D.J. McCleese, N.G. Heavens, J.T. Schofield, W.A. Abdou, J.L. Bandfield, S.B. Calcutt, P.G.J. Irwin, D.M. Kass, A. Kleinböhl, S.R. Lewis, D.A. Paige, P.L. Read, M.I. Richardson, J.H. Shirley, F.W. Taylor, N. Teanby, R.W. Zurek, Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols. J. Geophys. Res., Planets 115 (2010). doi:10.1029/2010JE003677

  • A.S. McEwen, M.E. Banks, N. Baugh, K. Becker, A. Boyd, J.W. Bergstrom, R.A. Beyer, E. Bortolini, N.T. Bridges, S. Byrne, B. Castalia, F.C. Chuang, L.S. Crumpler, I. Daubar, A.K. Davatzes, D.G. Deardorff, A. DeJong, W.A. Delamere, E. Noe Dobrea, C.M. Dundas, E.M. Eliason, Y. Espinoza, A. Fennema, K.E. Fishbaugh, T. Forrester, P.E. Geissler, J.A. Grant, J.L. Griffes, J.P. Grotzinger, V.C. Gulick, C.J. Hansen, K.E. Herkenhoff, R. Heyd, W.L. Jaeger, D. Jones, B. Kanefsky, L. Keszthelyi, R. King, R.L. Kirk, E.J. Kolb, J. Lasco, A. Lefort, R. Leis, K.W. Lewis, S. Martinez-Alonso, S. Mattson, G. McArthur, M.T. Mellon, J.M. Metz, M.P. Milazzo, R.E. Milliken, T. Motazedian, C.H. Okubo, A. Ortiz, A.J. Philippoff, J. Plassmann, A. Polit, P.S. Russell, C. Schaller, M.L. Searls, T. Spriggs, S.W. Squyres, S. Tarr, N. Thomas, B.J. Thomson, L.L. Tornabene, C. Van Houten, C. Verba, C. Weitz, J.J. Wray, The high resolution imaging science experiment (HiRISE) during MRO’s primary science phase (PSP). Icarus 205, 2–37 (2010). doi:10.1016/j.icarus.2009.04.023

    Article  ADS  Google Scholar 

  • J.B. McGinnigle, Dust whirls in north-west Libya. Weather 21, 272–276 (1966). doi:10.1002/j.1477-8696.1966.tb05204.x

    Article  ADS  Google Scholar 

  • S.M. Metzger, Dust devils as aeolian transport mechanisms in southern Nevada and in the Mars Pathfinder landing site, PhD thesis, Univ. Nevada, Reno (1999), 208 pp.

  • S.M. Metzger, M.R. Balme, M.C. Towner, B.J. Bos, T.J. Ringrose, M.R. Patel, In situ measurements of particle load and transport in dust devils. Icarus 214, 766–772 (2011). doi:10.1016/j.icarus.2011.03.013

    Article  ADS  Google Scholar 

  • L. Montabone, F. Forget, E. Millour, R.J. Wilson, S.R. Lewis, B. Cantor, D. Kass, A. Kleinböhl, M.T. Lemmon, M.D. Smith, M.J. Wolff, Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015). doi:10.1016/j.icarus.2014.12.034

    Article  ADS  Google Scholar 

  • L. Montabone, S.R. Lewis, P.L. Read, Interannual variability of Martian dust storms in assimilation of several years of Mars global surveyor observations. Adv. Space Res. 36, 2146–2155 (2005). doi:10.1016/j.asr.2005.07.047

    Article  ADS  Google Scholar 

  • F. Montmessin, F. Forget, P. Rannou, M. Cabane, R.M. Haberle, Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model. J. Geophys. Res., Planets 109, E10004 (2004). doi:10.1029/2004JE002284

    Article  ADS  Google Scholar 

  • C. Moulin, I. Chiapello, Evidence of the control of summer atmospheric transport of African dust over the Atlantic by Sahel sources from TOMS satellites (1979–2000). Geophys. Res. Lett. 31, L02107 (2004). doi:10.1029/2003GL018931

    Article  ADS  Google Scholar 

  • D.R. Muhs, S.R. Cattle, O. Crouvi, D.-D. Rousseau, J. Sun, M.A. Zárate, Loess records, in Mineral Dust: A Key Player in the Earth System, ed. by P. Knippertz, J.-B.W. Stuut (Springer, Dordrecht, 2014), p. 411. doi:10.1007/978-94-017-8978-3D

    Google Scholar 

  • D.P. Mulholland, P.L. Read, S.R. Lewis, Simulating the interannual variability of major dust storms on Mars using variable lifting thresholds. Icarus 223, 344–358 (2013). doi:10.1016/j.icarus.2012.12.003

    Article  ADS  Google Scholar 

  • D.P. Mulholland, A. Spiga, C. Listowski, P.L. Read, An assessment of the impact of local processes on dust lifting in martian climate models. Icarus 252, 212–227 (2015). doi:10.1016/j.icarus.2015.01.017

    Article  ADS  Google Scholar 

  • S. Murchie et al., R. Arvidson, P. Bedini, K. Beisser, J.-P. Bibring, J. Bishop, J. Boldt, P. Cavender, T. Choo, R.T. Clancy, E.H. Darlington, D. Des Marais, R. Espiritu, D. Fort, R. Green, E. Guinness, J. Hayes, C. Hash, K. Heffernan, J. Hemmler, G. Heyler, D. Humm, J. Hutcheson, N. Izenberg, R. Lee, J. Lees, D. Lohr, E. Malaret, T. Martin, J.A. McGovern, P. McGuire, R. Morris, J. Mustard, S. Pelkey, E. Rhodes, M. Robinson, T. Roush, E. Schaefer, G. Seagrave, G. Seelos, P. Silverglate, S. Slavney, M. Smith, W.J. Shyong, K. Strohbehn, H. Taylor, P. Thompson, B. Tossman, M. Wirzburger, M. Wolff, Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO). J. Geophys. Res. 112 (2007). doi:10.1029/2006JE002682

  • J.R. Murphy, S. Nelli, Mars Pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29, 11–14 (2002). doi:10.1029/2002GL015214

    Google Scholar 

  • T. Navarro, J.-B. Madeleine, F. Forget, A. Spiga, E. Millour, F. Montmessin, A. Määttänen, Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res., Planets 119, 1479–1495 (2014). doi:10.1002/2013JE004550

    Article  ADS  Google Scholar 

  • L.D.V. Neakrase, J. McHone, P.L. Whelley, R. Greeley, Saharan dust devil tracks: Mars analog field study areas, in Abstracts with Programs (Geol. Soc. Am., Houston, 2008), p. 262, Abst. #40

    Google Scholar 

  • L.D.V. Neakrase, J. McHone, P.L. Whelley, R. Greeley, Terrestrial analogs to Mars: east-central Saharan dust devil tracks, in Lunar Planet. Sci. Conf. XLIII, League City, TX (2012) Abst. #2009

    Google Scholar 

  • F.M. Neubauer, Thermal convection in the martian atmosphere. J. Geophys. Res. 71(10), 2419–2426 (1966). doi:10.1029/JZ071i010p02419

    Article  ADS  Google Scholar 

  • G.A. Neumann, D.E. Smith, M.T. Zuber, Two Mars years of clouds detected by the Mars Orbiter Laser Altimeter. J. Geophys. Res. 108, 5023 (2003). doi:10.1029/2002JE001849

    Article  Google Scholar 

  • C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle, 1. Representations of dust transport processes. J. Geophys. Res. 107(E12), 5123 (2002a). doi:10.1029/2002JE001910

    Google Scholar 

  • C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. J. Geophys. Res. 107(E12), 5124 (2002b). doi:10.1029/2002JE001920

    Google Scholar 

  • C.E. Newman, S.R. Lewis, P.L. Read, The atmospheric circulation and dust activity in different orbital epochs on Mars. Icarus 174, 135–160 (2005). doi:10.1016/j.icarus.2004.10.023

    Article  ADS  Google Scholar 

  • A.H. Omar, D.M. Winker, M.A. Vaughan, Y. Hu, C.R. Trepte, R.A. Ferrare, K.-P. Lee, C.A. Hostetler, C. Kittaka, R. Rogers, R.E. Kuehn, Z. Liu, The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol. 26, 1994–2014 (2009). doi:10.1175/2009JTECHA1231.1

    Article  ADS  Google Scholar 

  • A.V. Pathare, M.R. Balme, S.M. Metzger, A. Spiga, M.C. Towner, N.O. Renno, F. Saca, Assessing the power law hypothesis for the size–frequency distribution of terrestrial and martian dust devils. Icarus 209, 851–853 (2010). doi:10.1016/j.icarus2010.06.027

    Article  ADS  Google Scholar 

  • S. Peyridieu, A. Chédin, D. Tanré, V. Capelle, C. Pierangelo, N. Lamquin, R. Armante, Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic—comparison to MODIS and CALIPSO. Atmos. Chem. Phys. 10(4), 1953–1967 (2010). doi:10.5194/acp-10-1953-2010

    Article  ADS  Google Scholar 

  • A. Petrosyan, B. Galperin, S.E. Larsen, S.R. Lewis, A. Määttänen, P.L. Read, N. Renno, L.P.H.T. Rogberg, H. Savijrvi, T. Siili, A. Spiga, A. Toigo, L. Vázquez, The Martian atmospheric boundary layer. Rev. Geophys. 49 (2011). doi:10.1029/2010RG000351

  • J.M.C. Plane, Cosmic dust in the Earth’s atmosphere. Chem. Soc. Rev. 41(19), 6507–6518 (2012). doi:10.1039/C2CS35132C

    Article  ADS  Google Scholar 

  • J.B. Pollack, D.S. Colburn, F.M. Flasar, R. Kahn, C.E. Carlston, D. Pidek, Properties and effects of dust particles suspended in the Martian atmosphere. J. Geophys. Res. 84 (1979). doi:10.1029/JB084iB06p02929

  • J.M. Prospero, P.J. Lamb, African droughts and dust transport to the Caribbean: climate change implications. Science 302, 1024–1027 (2003). doi:10.1126/science.1089915

    Article  ADS  Google Scholar 

  • J.M. Prospero, P. Ginoux, O. Torres, S.E. Nicholson, T.E. Gill, Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40(1), 1002 (2002). doi:10.1029/2000RG000095

    Article  ADS  Google Scholar 

  • J.M. Prospero, J.E. Bullard, R. Hodgkins, High-latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms. Science 335, 1078–1082 (2012). doi:10.1126/science.1217447

    Article  ADS  Google Scholar 

  • N. Putzig, M. Mellon, K. Kretke, R. Arvidson, Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus 173(2), 325–341 (2005). doi:10.1016/j.icarus.2004.08.017

    Article  ADS  Google Scholar 

  • S.C.R. Rafkin, The potential importance of non-local, deep transport on the energetics, momentum, chemistry, and aerosol distributions in the atmospheres of Earth, Mars, and Titan. Planet. Space Sci. 60, 147–154 (2012). doi:10.1016/j.pss.2011.07.015

    Article  ADS  Google Scholar 

  • S.C.R. Rafkin, M.R.V.S. Maria, T.I. Michaels, Simulation of the atmospheric thermal circulation of a martian volcano using a mesoscale numerical model. Nature 419, 697–699 (2002). doi:10.1038/nature01206

    Article  ADS  Google Scholar 

  • P.L. Read, S.R. Lewis, The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet (Springer/Praxis Books, Berlin/New York, 2004)

    Google Scholar 

  • H.E. Redmond, K.D. Dial, J.E. Thompson, Light scattering and absorption by wind blown dust: theory, measurement, and recent data. Aeolian Res. 2(1), 5–26 (2010). doi:10.1016/j.aeolia.2009.09.002

    Article  ADS  Google Scholar 

  • D. Reiss, D. Lüsebrink, H. Hiesinger, T. Kelling, G. Wurm, J. Teiser, High altitude dust devils on Arsia Mons: testing the greenhouse and thermophoresis hypothesis of dust lifting, in Lunar and Planetary Science Conference XL, the Woodlands, TX (2009) Abst. #1961

    Google Scholar 

  • D. Reiss, J. Raack, A.P. Rossi, G. Di Achille, H. Hiesinger, First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars. Geophys. Res. Lett. 37, L14203 (2010). doi:10.1029/2010GL044016

    ADS  Google Scholar 

  • D. Reiss, J. Raack, H. Hiesinger, Bright dust devil tracks on Earth: implications for their formation on Mars. Icarus 211, 917–920 (2011a). doi:10.1016/j.icarus.2010.09.009

    Article  ADS  Google Scholar 

  • D. Reiss, M. Zanetti, G. Neukum, Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC). Icarus 215, 358–369 (2011b). doi:10.1016/j.icarus.2011.06.011

    Article  ADS  Google Scholar 

  • D. Reiss, M.I. Zimmerman, D.C. Lewellen, Formation of cycloidal dust devil tracks by redeposition of coarse sands in southern Peru: implications for Mars. Earth Planet. Sci. Lett. 383, 7–15 (2013). doi:10.1016/j.epsl.2013.09.033

    Article  ADS  Google Scholar 

  • D. Reiss, A. Spiga, G. Erkeling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20 (2014a). doi:10.1016/j.icarus.2013.08.028

    Article  ADS  Google Scholar 

  • D. Reiss, N.M. Hoekzema, O.J. Stenzel, Dust deflation by dust devils on Mars derived from optical depth measurements using the shadow method in HiRISE images. Planet. Space Sci. 93–94, 54–64 (2014b). doi:10.1016/j.pss.2014.01.016

    Article  Google Scholar 

  • L.A. Remer, R.G. Kleidman, R.C. Levy, Y.J. Kaufman, D. Tanré, S. Mattoo, J.V. Martins, C. Ichoku, I. Koren, H. Yu, B.N. Holben, Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. 113, D14S07 (2008). doi:10.1029/2007JD009661

    Article  ADS  Google Scholar 

  • N.O. Rennó, M.L. Burkett, M.P. Larkin, A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252 (1998). doi:10.1175/1520-0469(1998)055<3244:ASTTFD>2.0.CO;2

    Article  ADS  MathSciNet  Google Scholar 

  • N.O. Rennó, A.A. Nash, J. Lunine, J. Murphy, Martian and terrestrial dust devils: test of a scaling theory using Pathfinder data. J. Geophys. Res. 105, 1859–1865 (2000). doi:10.1029/1999JE001037

    Article  ADS  Google Scholar 

  • N.O. Rennó, V.J. Abreu, J. Koch, P.H. Smith, O.K. Hartogensis, H.A.R. De Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109 (2004). doi:10.1029/2003JE002219

  • T.J. Ringrose, M.C. Towner, J.C. Zarnecki, Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60. Icarus 163, 78–87 (2003). doi:10.1016/S0019-1035(03)00073-3

    Article  ADS  Google Scholar 

  • A.P. Rossi, L. Marinangeli, The first terrestrial analogue to Martian dust devil tracks found in Ténéré Desert, Niger. Geophys. Res. Lett. 31, L06702 (2004). doi:10.1029/2004GL019428

    Article  ADS  Google Scholar 

  • J.A. Ryan, Notes on the martian yellow clouds. J. Geophys. Res. 69(18), 3759–3770 (1964). doi:10.1029/JZ069i018p03759

    Article  ADS  Google Scholar 

  • J.A. Ryan, J.J. Carroll, Dust devil wind velocities: mature state. J. Geophys. Res. 75, 531–541 (1970). doi:10.1029/JC075i003p00531

    Article  ADS  Google Scholar 

  • J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on Mars. J. Geophys. Res. 88(C15), 11005–11011 (1983). doi:10.1029/JC088iC15p11005

    Article  ADS  Google Scholar 

  • K. Schepanski, I. Tegen, M.C. Todd, B. Heinold, G. Bonisch, B. Laurent, A. Macke, Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models. J. Geophys. Res. 114, D10201 (2009). doi:10.1029/2008JD010325

    Article  ADS  Google Scholar 

  • A. Schnapf, TIROS: A Story of Achievement, AED P-5167A (Radio Corporation of America, Princeton, 1964), p. 37

    Google Scholar 

  • P.C. Sinclair, Some preliminary dust devil measurements. Mon. Weather Rev. 92, 363–367 (1964). doi:10.1126/science.27.693.594

    Article  ADS  Google Scholar 

  • P.C. Sinclair, On the rotation of dust devils. Bull. Am. Meteorol. Soc. 46, 388–391 (1965)

    Google Scholar 

  • P.C. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8, 32–45 (1969). doi:10.1175/1520-0450(1969)008<0032:GCODD>2.0.CO;2

    Article  ADS  Google Scholar 

  • P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30, 1599–1619 (1973). doi:10.1175/1520-0469(1973)030<1599:TLSODD>2.0.CO;2

    Article  ADS  Google Scholar 

  • A. Slingo, T.P. Ackerman, R.P. Allan, E.I. Kassianov, S.A. McFarlane, G.J. Robinson, J.C. Barnard, M.A. Miller, J.E. Harries, J.E. Russell, S. Dewitte, Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophys. Res. Lett. 33, L24817 (2006). doi:10.1029/2006GL027869

    Article  ADS  Google Scholar 

  • M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167(1), 148–165 (2004). doi:10.1016/j.icarus.2003.09.010

    Article  ADS  Google Scholar 

  • M.D. Smith, THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus 202, 444–452 (2009). doi:10.1016/j.icarus.2009.03.027

    Article  ADS  Google Scholar 

  • P.H. Smith, M. Lemmon, Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder. J. Geophys. Res. 104, 8975 (1999). doi:10.1029/1998JE900017

    Article  ADS  Google Scholar 

  • M.D. Smith, J.C. Pearl, B.J. Conrath, P.R. Christensen, Mars global surveyor thermal emission spectrometer (TES) observations of dust opacity during aerobraking and science phasing. J. Geophys. Res. 105, 9539–9552 (2000). doi:10.1029/1999JE0010

    Article  ADS  Google Scholar 

  • D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Bannerdt, T.C. Duxbury, M.P. Golombek, F.g. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001a). doi:10.1029/2000JE001364

    Article  ADS  Google Scholar 

  • M.D. Smith, J.C. Pearl, B.J. Conrath, P.R. Christensen, One Martian year of atmospheric observations by the thermal emission spectrometer. Geophys. Res. Lett. 28, 4263–4266 (2001b). doi:10.1029/2001GL013608

    Article  ADS  Google Scholar 

  • M.D. Smith, M.J. Wolff, M.T. Lemmon, N. Spanovich, D. Banfield, C.J. Budney, R.T. Clancy, A. Ghosh, G.A. Landis, P. Smith, B. Whitney, P.R. Christensen, S.W. Squyres, First atmospheric science results from the Mars exploration rovers Mini-TES. Science 306, 1750–1753 (2004). doi:10.1126/science.1104257

    Article  ADS  Google Scholar 

  • M.D. Smith, M.J. Wolff, R.T. Clancy, A. Kleinböhl, S.L. Murchie, Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. J. Geophys. Res. 118, 321–334 (2013). doi:10.1002/jgre.20047

    Article  Google Scholar 

  • J.T. Snow, T.M. McClelland, Dust devils at White Sands Missile Range, New Mexico 1. Temporal and spatial distributions. J. Geophys. Res. 95, 13707–13721 (1990). doi:10.1029/JD095iD09p13707

    Article  ADS  Google Scholar 

  • C.W. Snyder, V.I. Moroz, Spacecraft exploration of Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 71–119

    Google Scholar 

  • A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res. 114 (2009). doi:10.1029/2008je003242

  • A. Spiga, F. Forget, S.R. Lewis, D.P. Hinson, Structure and dynamics of the convective boundary layer on mars as inferred from large-eddy simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010). doi:10.1002/qj.563

    Article  ADS  Google Scholar 

  • A. Spiga, S.R. Lewis, Martian mesoscale and microscale wind variability of relevance for dust lifting. Mars 5, 146–158 (2010). doi:10.1555/mars.2010.0006

    Article  ADS  Google Scholar 

  • J.D. Spinhirne, S.P. Palm, W.D. Hart, D.L. Hlavka, E.J. Welton, Cloud and aerosol measurements from GLAS: overview an initial results. Geophys. Res. Lett. 32 (2005). doi:10.1029/2005GL023507

  • C. Stanzel, M. Pätzold, R. Greeley, E. Hauber, G. Neukum, Dust devils on Mars observed by the high resolution stereo camera. Geophys. Res. Lett. 33, L11202 (2006). doi:10.1029/2006GL025816

    Article  ADS  Google Scholar 

  • C. Stanzel, Studying martian dust devils by applying pattern recognition algorithms to multi-mission camera images. PhD thesis, University of Cologne (2007). 158 pp.

  • C. Stanzel, M. Pätzold, D.A. Williams, P.L. Whelley, R. Greeley, G. Neukum, The HRSC Co-Investigator Team, Dust devil speeds, directions of motion and general characteristics observed by the Mars express high resolution stereo camera. Icarus 197, 39–51 (2008). doi:10.1016/j.icarus2008.04.017

    Article  ADS  Google Scholar 

  • L.J. Steele, S.R. Lewis, M.R. Patel, The radiative impact of water ice clouds from a reanalysis of Mars climate sounder data. Geophys. Res. Lett. 41, 4471–4478 (2014a). doi:10.1002/2014GL060235

    Article  ADS  Google Scholar 

  • L.J. Steele, S.R. Lewis, M.R. Patel, F. Montmessin, F. Forget, M.D. Smith, The seasonal cycle of water vapour on Mars from assimilation of thermal emission spectrometer data. Icarus 237, 97–115 (2014b). doi:10.1016/j.icarus.2014.04.017

    Article  ADS  Google Scholar 

  • M.J. Strausberg, H. Wang, M.I. Richardson, S.P. Ewald, A.D. Toigo, Observations of the initiation and evolution of the 2001 Mars global dust storm. J. Geophys. Res. 110, E02006 (2005). doi:10.1029/2004JE002361

    Article  ADS  Google Scholar 

  • R. Swap, S. Ulanski, M. Cobbett, M. Garstang, Temporal and spatial characteristics of Saharan dust outbreaks. J. Geophys. Res. 101(D2), 4205–4220 (1996). doi:10.1029/95JD03236

    Article  ADS  Google Scholar 

  • D. Tanré, F.M. Bréon, J.L. Deuzé, O. Dubovik, F. Ducos, P. François, P. Goloub, M. Herman, A. Lifermann, F. Waquet, Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmos. Meas. Tech. 4, 1383–1395 (2011). doi:10.5194/amt-4-1383-2011

    Article  Google Scholar 

  • P. Thomas, P.J. Gierasch, Dust devils on Mars. Science 230, 175–177 (1985). doi:10.1126/science.230.4722.175

    Article  ADS  Google Scholar 

  • O. Torres, P.K. Bhartia, J.R. Herman, Z. Ahmad, Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. J. Geophys. Res. 103, 17099–17110 (1998). doi:10.1029/98JD00900

    Article  ADS  Google Scholar 

  • M.C. Towner, Characteristics of large Martian dust devils using Mars Odyssey Thermal Emission Imaging System visual and infrared images. J. Geophys. Res. 114, E02010 (2009). doi:10.1029/2008JE003220

    Article  ADS  Google Scholar 

  • D.M. Tratt, M.H. Hecht, D.C. Catling, E.C. Samulon, P.H. Smith, In situ measurement of dust devil dynamics: toward a strategy for Mars. J. Geophys. Res. 108 (2003). doi:10.1029/2003JE002161

  • United States, Catalogue of meteorological satellite data – TIROS VI television cloud photography. Key to Meteorological Records Documentation No. 5(36), (1964) 400 pp.

  • P. Vallelonga, A. Svensson, Ice core archives of mineral dust, in Mineral Dust: A Key Player in the Earth System, ed. by P. Knippertz, J.-B.W. Stuut (Springer, Dordrecht, 2014), p. 463. doi:10.1007/978-94-017-8978-3

    Google Scholar 

  • H. Wang, M.I. Richardson, R.J. Wilson, A.P. Ingersoll, A.D. Toigo, R.W. Zurek, Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars. Geophys. Res. Lett. 30 (2003). doi:10.1029/2002GL016828

  • H. Wang, Dust storms originating in the northern hemisphere during the third mapping year of Mars Global Surveyor. Icarus 189, 325–343 (2007). doi:10.1016/j.icarus.2007.01.014

    Article  ADS  Google Scholar 

  • H. Wang, J.A. Fisher, North polar frontal clouds and dust storms on Mars during spring and summer. Icarus 204, 103–113 (2009). doi:10.1016/j.icarus.2009.05.028

    Article  ADS  Google Scholar 

  • H. Wang, M.I. Richardson, The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus 251, 112–127 (2015). doi:10.1016/j.icarus.2013.10.033

    Article  ADS  Google Scholar 

  • A. Wennmacher, F.M. Neubauer, M. Pätzold, J. Schmitt, K. Schulte, A search for dust devils on Mars, in Lunar Planet. Sci. Conf. XXVII, League City, TX (1996). Abst. #1417

    Google Scholar 

  • P.L. Whelley, R. Greeley, The distribution of dust devil activity on Mars. J. Geophys. Res. 113, E7 (2008). doi:10.1029/2007JE002966

    Article  Google Scholar 

  • N.R. Williams, Development of dust whirls and similar small-scale vortices. Bull. Am. Meteorol. Soc. 29, 106–117 (1948)

    Google Scholar 

  • G.E. Willis, J.W. Deardorff, Laboratory observations of turbulent penetrative convection planforms. J. Geophys. Res. 84, 295–302 (1979). doi:10.1029/JC084iC01p00295

    Article  ADS  Google Scholar 

  • R.J. Wilson, S.R. Lewis, L. Montabone, M.D. Smith, Influence of water ice clouds on Martian tropical atmospheric temperatures. Geophys. Res. Lett. 35 (2008). doi:10.1029/2007GL032405

  • G. Winckler, R.F. Anderson, D. McGee, M.Q. Fleisher, N. Mahowald, Half a million years of coherent dust flux variations in the tropical Pacific and Antarctica, in 8th Annual V.M. Goldschmidt Conference (Pergamon–Elsevier, Vancouver, 2008) pp. A1026

    Google Scholar 

  • D.M. Winker, J. Pelon, J.A. Coakley Jr., S.A. Ackerman, R.J. Charlson, P.R. Colarco, P. Flamant, Q. Fu, R.M. Hoff, C. Kittaka, T.L. Kubar, H. Le Treut, M.P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M.A. Vaughan, B.A. Wielicki, The CALIPSO mission: a global 3D view of aerosols and clouds. Bull. Am. Meteorol. Soc. 91, 1211–1229 (2010). doi:10.1175/2010BAMS3009.1

    Article  ADS  Google Scholar 

  • M.J. Wolff, M.D. Smith, R.T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, H. Savijärvi, Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. J. Geophys. Res. 114, E00D04 (2009). doi:10.1029/2009JE003350

    Article  ADS  Google Scholar 

  • S. Wong, A.E. Dessler, N.M. Mahowald, P. Yang, Q. Feng, Maintenance of lower tropospheric temperature inversion in the Saharan Air Layer by dust and dry anomaly. J. Climate 22(19), 5149–5162 (2009). doi:10.1175/2009JCLI2847.1

    Article  ADS  Google Scholar 

  • F. Yang, P.A. Mlsna, P. Geissler, Gaussian-based filters for detecting martian dust devils, in 2006 IEEE Southwest Symp. Image Anal. Interpret., pp. 46–50 (2006). doi:10.1109/SSIAI.2006.1633719

    Chapter  Google Scholar 

  • H. Yu, M. Chin, T. Yuan, H. Bian, L.A. Remer, J.M. Prospero, A. Omar, D. Winker, Y. Yang, Y. Zhang, Z. Zhang, C. Zhao, The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett. 42 (2015). doi:10.1002/2015GL063040

  • M.T. Zuber, D.E. Smith, S.C. Solomon, D.O. Muhleman, J.W. Head, J.B. Garvin, J.B. Abshire, J.L. Bufton, The Mars observer laser altimeter investigation. J. Geophys. Res. 97(E5), 7781–7797 (1992). doi:10.1029/92JE00341

    Article  ADS  Google Scholar 

  • L. Zasova, V. Formisano, N. Moroz, D. Grassi, N. Ignatiev, M. Giuranna, G. Hansen, M. Blecka, A. Ekonomov, E. Lellouch, S. Fonti, A. Grigoriev, H. Hirsch, I. Khatuntsev, A. Mattana, A. Maturilli, A. Moshkin, D. Patsaev, G. Piccioni, M. Rataj, B. Saggin, Water clouds and dust aerosols observations with PFS MEX at Mars. Planet. Space Sci. 53, 1065–1077 (2005). doi:10.1016/j.pss.2004.12.010

    Article  ADS  Google Scholar 

  • A. Zhu, V. Ramanathan, F. Li, D. Kim, Dust plumes over the Pacific, Indian, and Atlantic oceans: climatology and radiative impact. J. Geophys. Res. 112, D16208 (2007). doi:10.1029/2007JD008427

    Article  ADS  Google Scholar 

  • R.W. Zurek, J.R. Barnes, R.M. Haberle, J.B. Pollack, J.E. Tillman, C.B. Leovy, Dynamics of the atmosphere of Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 835–933

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous reviewers and an editor for many suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori Fenton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenton, L., Reiss, D., Lemmon, M. et al. Orbital Observations of Dust Lofted by Daytime Convective Turbulence. Space Sci Rev 203, 89–142 (2016). https://doi.org/10.1007/s11214-016-0243-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0243-6

Keywords

Navigation