Skip to main content
Log in

Kelvin Helmholtz Instability in Planetary Magnetospheres

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Kelvin–Helmholtz instability plays a particularly important role in plasma transport at magnetospheric boundaries because it can control the development of a turbulent boundary layer, which governs the transport of mass, momentum, and energy across the boundary. Waves generated at the interface can also couple into body modes in the plasma sheet and inner magnetosphere where they can play an important role in plasma sheet transport and particle energization in the inner magnetosphere. Kinetic and electron-scale effects are important for the development of K–H instability, leading to secondary instabilities and plasma mixing. The development of vortices that entwine magnetosheath field lines with magnetospheric field lines also allows reconnection and the interchange of plasma blobs from open to closed field lines. Dawn-dusk asymmetries in Kelvin–Helmholtz development at planetary boundary layers may result from several effects including plasma corotation, kinetic effects, magnetic geometry, or asymmetric distribution of plasma. Examples are provided throughout the solar system illustrating the pervasive effects of the Kelvin–Helmholtz instability on plasma transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • U.V. Amerstorfer, H. Gunell, N.V. Erkaev, H.K. Biernat, Shear driven waves in the induced magnetosphere of Mars: parameter dependence. Astrophys. Space Sci. Trans. 5, 39–42 (2009). doi:10.5194/astra-5-39-2009

    ADS  Google Scholar 

  • E.E. Antonova, I.L. Ovchinnikov, Magnetostatically equilibrated plasma sheet with developed medium-scale turbulence: structure and implications for substorm dynamics. J. Geophys. Res. 104, 17289–17298 (1999). doi:10.1029/1999JA900141

    ADS  Google Scholar 

  • K. Asamura, C.C. Chaston, Y. Itoh, M. Fujimoto, T. Sakanoi, Y. Ebihara, A. Yamazaki, M. Hirahara, K. Seki, Y. Kasaba, M. Okada, Sheared flows and small-scale Alfvén wave generation in the auroral acceleration region. Geophys. Res. Lett. 36, 5105 (2009). doi:10.1029/2008GL036803

    ADS  Google Scholar 

  • J.W. Belcher, L. Davis Jr., Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534 (1971). doi:10.1029/JA076i016p03534

    ADS  Google Scholar 

  • J. Birn, M. Hesse, K. Schindler, Entropy conservation in simulations of magnetic reconnection. Phys. Plasmas 13(9), 092117 (2006). doi:10.1063/1.2349440

    ADS  Google Scholar 

  • S.A. Boardsen, T. Sundberg, J.A. Slavin, B.J. Anderson, H. Korth, S.C. Solomon, L.G. Blomberg, Observations of Kelvin–Helmholtz waves along the dusk-side boundary of Mercury’s magnetosphere during MESSENGER’s third flyby. Geophys. Res. Lett. 37, 12101 (2010). doi:10.1029/2010GL043606

    ADS  Google Scholar 

  • J.E. Borovsky, H.O. Funsten, Role of solar wind turbulence in the coupling of the solar wind to the Earth’s magnetosphere. J. Geophys. Res. 108, 1246 (2003). doi:10.1029/2002JA009601

    Google Scholar 

  • M. Bouhram, B. Klecker, G. Paschmann, S. Haaland, H. Hasegawa, A. Blagau, H. Rème, J.-A. Sauvaud, L.M. Kistler, A. Balogh, Survey of energetic O+ ions near the dayside mid-latitude magnetopause with cluster. Ann. Geophys. 23, 1281–1294 (2005)

    ADS  Google Scholar 

  • N. Bucciantini, E. Amato, L. Del Zanna, Relativistic MHD simulations of pulsar bow-shock nebulae. Astron. Astrophys. 434, 189–199 (2005). doi:10.1051/0004-6361:20042205

    ADS  Google Scholar 

  • L.J. Cahill Jr., J.R. Winckler, Periodic magnetopause oscillations observed with the GOES satellites on March 24, 1991. J. Geophys. Res. 97, 8239–8243 (1992). doi:10.1029/92JA00433

    ADS  Google Scholar 

  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, 1961)

    MATH  Google Scholar 

  • C.R. Chappell, T.E. Moore, J.H. Waite Jr., The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere. J. Geophys. Res. 92, 5896–5910 (1987)

    ADS  Google Scholar 

  • C.C. Chaston, K. Seki, Small-scale auroral current sheet structuring. J. Geophys. Res. 115, 11221 (2010). doi:10.1029/2010JA015536

    Google Scholar 

  • C.C. Chaston, M. Wilber, F.S. Mozer, M. Fujimoto, M.L. Goldstein, M. Acuna, H. Reme, A. Fazakerley, Mode conversion and anomalous transport in Kelvin–Helmholtz vortices and kinetic Alfvén waves at the Earth’s magnetopause. Phys. Rev. Lett. 99(17), 175004 (2007). doi:10.1103/PhysRevLett.99.175004

    ADS  Google Scholar 

  • C.C. Chaston, Y. Yao, N. Lin, C. Salem, G. Ueno, Ion heating by broadband electromagnetic waves in the magnetosheath and across the magnetopause. J. Geophys. Res. 118, 5579–5591 (2013). doi:10.1002/jgra.50506

    Google Scholar 

  • C. Chaston, J. Bonnell, J.P. McFadden, C.W. Carlson, C. Cully, O. Le Contel, A. Roux, H.U. Auster, K.H. Glassmeier, V. Angelopoulos, C.T. Russell, Turbulent heating and cross-field transport near the magnetopause from THEMIS. Geophys. Res. Lett. 35 (2008). doi:10.1029/2008GL033601

  • L. Chen, Theory of plasma transport induced by low-frequency hydromagnetic waves. J. Geophys. Res. 104, 2421–2428 (1999). doi:10.1029/1998JA900051

    ADS  Google Scholar 

  • Q. Chen, A. Otto, L.C. Lee, Tearing instability, Kelvin–Helmholtz instability, and magnetic reconnection. J. Geophys. Res. 102, 151–162 (1997). doi:10.1029/96JA03144

    ADS  Google Scholar 

  • S.-H. Chen, M.G. Kivelson, J.T. Gosling, R.J. Walker, A.J. Lazarus, Anomalous aspects of magnetosheath flow and of the shape and oscillations of the magnetopause during an interval of strongly northward interplanetary magnetic field. J. Geophys. Res. 98, 5727–5742 (1993)

    ADS  Google Scholar 

  • S.G. Claudepierre, S.R. Elkington, M. Wiltberger, Solar wind driving of magnetospheric ULF waves: pulsations driven by velocity shear at the magnetopause. J. Geophys. Res. 113, 5218 (2008). doi:10.1029/2007JA012890

    Google Scholar 

  • H.L. Collin, E.G. Shelley, A.G. Ghielmetti, R.D. Sharp, Observations of transverse and parallel acceleration of terrestrial ions at high latitudes, in Ion Acceleration in the Magnetosphere and Ionosphere; Proceedings of the Chapman Conference on Ion Acceleration in the Magnetosphere (Am. Geophys. Union, Washington, 1986), pp. 67–71

    Google Scholar 

  • H.L. Collin, W.K. Peterson, O.W. Lennartsson, J.F. Drake, The seasonal variation of auroral ion beams. Geophys. Res. Lett. 25, 4071–4074 (1998). doi:10.1029/1998GL900090

    ADS  Google Scholar 

  • M.M. Cowee, D. Winske, S.P. Gary, Two-dimensional hybrid simulations of superdiffusion at the magnetopause driven by Kelvin–Helmholtz instability. J. Geophys. Res. 114, 10209 (2009). doi:10.1029/2009JA014222

    Google Scholar 

  • M.M. Cowee, D. Winske, S.P. Gary, Hybrid simulations of plasma transport by Kelvin–Helmholtz instability at the magnetopause: density variations and magnetic shear. J. Geophys. Res. 115, 6214 (2010). doi:10.1029/2009JA015011

    Google Scholar 

  • N.U. Crooker, T.E. Eastman, G.S. Stiles, Observations of plasma depletion in the magnetosheath at the dayside magnetopause. J. Geophys. Res. 84, 869–874 (1979). doi:10.1029/JA084iA03p00869

    ADS  Google Scholar 

  • B. Cushman-Roisin, Kelvin–Helmholtz instability as a boundary-value problem. Environ. Fluid Mech. 5(6), 507–525 (2005). doi:10.1007/s10652-005-2234-0

    Google Scholar 

  • J.C. Cutler, M.K. Dougherty, E. Lucek, A. Masters, Evidence of surface wave on the dusk flank of Saturn’s magnetopause possibly caused by the Kelvin–Helmholtz instability. J. Geophys. Res. 116, 10220 (2011). doi:10.1029/2011JA016643

    Google Scholar 

  • A.W. Degeling, R. Rankin, K. Kabin, I.J. Rae, F.R. Fenrich, Modeling ULF waves in a compressed dipole magnetic field. J. Geophys. Res. 115, 10212 (2010). doi:10.1029/2010JA015410

    Google Scholar 

  • P.A. Delamere, Hybrid code simulations of the solar wind interaction with Pluto. J. Geophys. Res. 114, 3220 (2009). doi:10.1029/2008JA013756

    Google Scholar 

  • P.A. Delamere, F. Bagenal, Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res. 115, 10201 (2010). doi:10.1029/2010JA015347

    Google Scholar 

  • P.A. Delamere, R.J. Wilson, A. Masters, Kelvin–Helmholtz instability at Saturn’s magnetopause: hybrid simulations. J. Geophys. Res. 116, 10222 (2011). doi:10.1029/2011JA016724

    Google Scholar 

  • P.A. Delamere, R.J. Wilson, S. Eriksson, F. Bagenal, Magnetic signatures of Kelvin–Helmholtz vortices on Saturn’s magnetopause: global survey. J. Geophys. Res. 118, 393–404 (2013). doi:10.1029/2012JA018197

    Google Scholar 

  • M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction. J. Geophys. Res. 117, 7202 (2012). doi:10.1029/2012JA017621

    Google Scholar 

  • M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the magnetopause of Saturn and implications for the solar wind interaction. J. Geophys. Res. 118, 3087–3095 (2013). doi:10.1002/jgra.50294

    Google Scholar 

  • M. Engebretson, K.-H. Glassmeier, M. Stellmacher, W.J. Hughes, H. Lühr, The dependence of high-latitude Pc5 wave power on solar wind velocity and on the phase of high-speed solar wind streams. J. Geophys. Res. 103, 26271–26384 (1998). doi:10.1029/97JA03143

    ADS  Google Scholar 

  • S. Eriksson, H. Hasegawa, W.-L. Teh, B.U.Ö. Sonnerup, J.P. McFadden, K.-H. Glassmeier, O. Le Contel, V. Angelopoulos, C.M. Cully, D.E. Larson, R.E. Ergun, A. Roux, C.W. Carlson, Magnetic island formation between large-scale flow vortices at an undulating postnoon magnetopause for northward interplanetary magnetic field. J. Geophys. Res. 114, A1 (2009). doi:10.1029/2008JA013505

    Google Scholar 

  • M. Faganello, F. Califano, F. Pegoraro, T. Andreussi, S. Benkadda, Magnetic reconnection and Kelvin–Helmholtz instabilities at the Earth’s magnetopause. Plasma Phys. Control. Fusion 54(12), 124037 (2012). doi:10.1088/0741-3335/54/12/124037

    ADS  Google Scholar 

  • D.H. Fairfield, A. Otto, T. Mukai, S. Kokubun, R.P. Lepping, J.T. Steinberg, A.J. Lazarus, T. Yamamoto, Geotail observations of the Kelvin–Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields. J. Geophys. Res. 105, 21159 (2000). doi:10.1029/1999JA000316

    ADS  Google Scholar 

  • D.H. Fairfield, C.J. Farrugia, T. Mukai, T. Nagai, A. Fedorov, Motion of the dusk flank boundary layer caused by solar wind pressure changes and the Kelvin–Helmholtz instability: 10–11 January 1997. J. Geophys. Res. 108, 1460 (2003). doi:10.1029/2003JA010134

    Google Scholar 

  • J.C. Foster, A.J. Coster, P.J. Erickson, J.M. Holt, F.D. Lind, W. Rideout, M. McCready, A. van Eyken, R.J. Barnes, R.A. Greenwald, F.J. Rich, Multiradar observations of the polar tongue of ionization. J. Geophys. Res. 110, 9 (2005). doi:10.1029/2004JA010928

    Google Scholar 

  • C. Foullon, C.J. Farrugia, A.N. Fazakerley, C.J. Owen, F.T. Gratton, R.B. Torbert, Evolution of Kelvin–Helmholtz activity on the dusk flank magnetopause. J. Geophys. Res. 113, 11203 (2008). doi:10.1029/2008JA013175

    Google Scholar 

  • C. Foullon, C.J. Farrugia, C.J. Owen, A.N. Fazakerley, F.T. Gratton, Kelvin–Helmholtz multi-spacecraft studies at the Earth’s magnetopause boundaries, in Twelfth International Solar Wind Conference, vol. 1216 (2010), pp. 483–486. doi:10.1063/1.3395908

    Google Scholar 

  • M. Fujimoto, T. Terasawa, Ion inertia effect on the Kelvin–Helmholtz instability. J. Geophys. Res. 96, 15725 (1991). doi:10.1029/91JA01312

    ADS  Google Scholar 

  • M. Fujimoto, T. Terasawa, Anomalous ion mixing within an MHD scale Kelvin–Helmholtz vortex. J. Geophys. Res. 99, 8601–8613 (1994). doi:10.1029/93JA02722

    ADS  Google Scholar 

  • M. Fujimoto, T. Terasawa, Anomalous ion mixing within an MHD scale Kelvin–Helmholtz vortex. 2: effects of inhomogeneity. J. Geophys. Res. 100, 12025 (1995). doi:10.1029/94JA02219

    ADS  Google Scholar 

  • M. Fujimoto, T. Tonooka, T. Mukai, Vortex-like fluctuations in the magnetotail flanks and their possible roles in plasma transport, in Earth’s Low-Latitude Boundary Layer, ed. by P. Newell, T. Onsager Geophysical Monograph (Am. Geophys. Union, Washington, 2003), pp. 241–251

    Google Scholar 

  • M. Fujimoto, T. Terasawa, T. Mukai, Y. Saito, T. Yamamoto, S. Kokubun, Plasma entry from the flanks of the near-Earth magnetotail. J. Geophys. Res. 103, 4391–4408 (1998)

    ADS  Google Scholar 

  • G. Ganguli, Stability of an inhomogeneous transverse plasma flow. Phys. Plasmas 4, 1544–1551 (1997). doi:10.1063/1.872285

    ADS  MathSciNet  Google Scholar 

  • G. Ganguli, Y.C. Lee, P.J. Palmadesso, Kinetic theory for electrostatic waves due to transverse velocity shears. Phys. Fluids 31, 823–838 (1988). doi:10.1063/1.866818

    ADS  MATH  Google Scholar 

  • E. Golbraikh, M. Gedalin, M. Balikhin, T.L. Zhang, Large amplitude nonlinear waves in Venus magnetosheath. J. Geophys. Res. 118, 1706–1710 (2013). doi:10.1002/jgra.50094

    Google Scholar 

  • H. Gunell, U.V. Amerstorfer, H. Nilsson, C. Grima, M. Koepke, M. Fränz, J.D. Winningham, R.A. Frahm, J.-A. Sauvaud, A. Fedorov, N.V. Erkaev, H.K. Biernat, M. Holmström, R. Lundin, S. Barabash, Shear driven waves in the induced magnetosphere of Mars. Plasma Phys. Control. Fusion 50(7), 074018 (2008). doi:10.1088/0741-3335/50/7/074018

    ADS  Google Scholar 

  • X.C. Guo, C. Wang, Y.Q. Hu, Global MHD simulation of the Kelvin–Helmholtz instability at the magnetopause for northward interplanetary magnetic field. J. Geophys. Res. 115, 10218 (2010). doi:10.1029/2009JA015193

    Google Scholar 

  • T.J. Hallinan, T.N. Davis, Small-scale auroral arc distortions. Planet. Space Sci. 18, 1735 (1970). doi:10.1016/0032-0633(70)90007-3

    ADS  Google Scholar 

  • A. Hasegawa, L. Chen, Kinetic processes in plasma heating by resonant mode conversion of Alfvén wave. Phys. Fluids 19, 1924–1934 (1976). doi:10.1063/1.861427

    ADS  Google Scholar 

  • H. Hasegawa, M. Fujimoto, K. Maezawa, Y. Saito, T. Mukai, Geotail observations of the dayside outer boundary region. J. Geophys. Res. 108, 9–1916 (2003)

    Google Scholar 

  • H. Hasegawa, B. Sonnerup, M. Dunlop, A. Balogh, S. Haaland, B. Klecker, G. Paschmann, B. Lavraud, I. Dandouras, H. Rème, Reconstruction of two-dimensional magnetopause structures from cluster observations: verification of method. Ann. Geophys. 22, 1251–1266 (2004a). doi:10.5194/angeo-22-1251-2004

    ADS  Google Scholar 

  • H. Hasegawa, M. Fujimoto, T.-D. Phan, H. Rème, A. Balogh, M.W. Dunlop, C. Hashimoto, R. TanDokoro, Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin–Helmholtz vortices. Nature 430, 755–758 (2004b). doi:10.1038/nature02799

    ADS  Google Scholar 

  • H. Hasegawa, B.U.Ö. Sonnerup, B. Klecker, G. Paschmann, M.W. Dunlop, H. Rème, Optimal reconstruction of magnetopause structures from cluster data. Ann. Geophys. 23, 973–982 (2005). doi:10.5194/angeo-23-973-2005

    ADS  Google Scholar 

  • H. Hasegawa, M. Fujimoto, K. Takagi, Y. Saito, T. Mukai, H. RèMe, Single-spacecraft detection of rolled-up Kelvin–Helmholtz vortices at the flank magnetopause. J. Geophys. Res. 111, 9203 (2006). doi:10.1029/2006JA011728

    Google Scholar 

  • H. Hasegawa, A. Retinò, A. Vaivads, Y. Khotyaintsev, M. André, T.K.M. Nakamura, W.-L. Teh, B.U.Ö. Sonnerup, S.J. Schwartz, Y. Seki, M. Fujimoto, Y. Saito, H. Rème, P. Canu, Kelvin–Helmholtz waves at the Earth’s magnetopause: multiscale development and associated reconnection. J. Geophys. Res. 114, 12207 (2009). doi:10.1029/2009JA014042

    Google Scholar 

  • M. Hesse, J. Birn, On the cessation of magnetic reconnection. Ann. Geophys. 22, 603–612 (2004). doi:10.5194/angeo-22-603-2004

    ADS  Google Scholar 

  • J.L. Horwitz, R.H. Comfort, C.R. Chappell, Thermal ion composition measurements of the formation of the new outer plasmasphere and double plasmapause during storm recovery phase. Geophys. Res. Lett. 11, 701–704 (1984)

    ADS  Google Scholar 

  • Z.-J. Hu, H.-G. Yang, H.-Q. Hu, B.-C. Zhang, D.-H. Huang, Z.-T. Chen, Q. Wang, The hemispheric conjugate observation of postnoon ”bright spots”/auroral spirals. J. Geophys. Res. 118, 1428–1434 (2013). doi:10.1002/jgra.50243

    Google Scholar 

  • J.D. Huba, Hall dynamics of the Kelvin–Helmholtz instability. Phys. Rev. Lett. 72, 2033–2036 (1994)

    ADS  Google Scholar 

  • J.D. Huba, The Kelvin–Helmholtz instability: finite Larmor radius magnetohydrodynamics. Geophys. Res. Lett. 23, 2907–2910 (1996). doi:10.1029/96GL02767

    ADS  Google Scholar 

  • K.-J. Hwang, M.M. Kuznetsova, F. Sahraoui, M.L. Goldstein, E. Lee, G.K. Parks, Kelvin–Helmholtz waves under southward interplanetary magnetic field. J. Geophys. Res. 116, 8210 (2011). doi:10.1029/2011JA016596

    Google Scholar 

  • T. Iijima, T.A. Potemra, Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res. 83, 599–615 (1978). doi:10.1029/JA083iA02p00599

    ADS  Google Scholar 

  • J.R. Johnson, C.Z. Cheng, Kinetic Alfvén waves and plasma transport at the magnetopause. Geophys. Res. Lett. 24, 1423–1426 (1997). doi:10.1029/97GL01333

    ADS  Google Scholar 

  • J.R. Johnson, C.Z. Cheng, Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophys. Res. Lett. 28, 4421–4424 (2001). doi:10.1029/2001GL013509

    ADS  Google Scholar 

  • J.R. Johnson, S. Wing, Northward interplanetary magnetic field plasma sheet entropies. J. Geophys. Res. 114, A9 (2009). doi:10.1029/2008JA014017

    Google Scholar 

  • J.R. Johnson, C.Z. Cheng, P. Song, Signatures of mode conversion and kinetic Alfvén waves at the magnetopause. Geophys. Res. Lett. 28, 227–230 (2001). doi:10.1029/2000GL012048

    ADS  Google Scholar 

  • J. Johnson, A. Otto, Y. Lin, S. Wing, E. Kim, Heavy ion effects on magnetopause transport. AGU Fall Meeting Abstracts, 2 (2009)

  • H. Karimabadi, V. Roytershteyn, C.G. Mouikis, L.M. Kistler, W. Daughton, Flushing effect in reconnection: effects of minority species of oxygen ions. Planet. Space Sci. 59, 526–536 (2011). doi:10.1016/j.pss.2010.07.014

    ADS  Google Scholar 

  • M.C. Kelley, M.N. Vlasov, J.C. Foster, A.J. Coster, A quantitative explanation for the phenomenon known as storm-enhanced density. Geophys. Res. Lett. 31, 19809 (2004). doi:10.1029/2004GL020875

    ADS  Google Scholar 

  • M.G. Kivelson, S.-H. Chen, The magnetopause: surface waves and instabilities and their possible dynamical consequences, in Physics of the Magnetopause, ed. by P. Song, B.U.O. Sonnerup, M.F. Thomsen Geophysical Monograph (Am. Geophys. Union, Washington, 1995), pp. 257–268

    Google Scholar 

  • Y. Kobayashi, M. Kato, K.T.A. Nakamura, T.K.M. Nakamura, M. Fujimoto, The structure of Kelvin Helmholtz vortices with super-sonic flow. Adv. Space Res. 41, 1325–1330 (2008). doi:10.1016/j.asr.2007.04.016

    ADS  Google Scholar 

  • L.C. Lee, R.K. Albano, J.R. Kan, Kelvin–Helmholtz instability in the magnetopause-boundary layer region. J. Geophys. Res. 86, 54–58 (1981). doi:10.1029/JA086iA01p00054

    ADS  Google Scholar 

  • W. Li, C. Wang, B. Tang, X. Guo, D. Lin, Global features of Kelvin–Helmholtz waves at the magnetopause for northward interplanetary magnetic field. J. Geophys. Res. 118, 5118–5126 (2013). doi:10.1002/jgra.50498

    Google Scholar 

  • A.P. Lobanov, J.A. Zensus, A cosmic double helix in the archetypical quasar 3C273. Science 294, 128–131 (2001). doi:10.1126/science.1063239

    ADS  Google Scholar 

  • W. Lotko, The magnetosphere ionosphere system from the perspective of plasma circulation: a tutorial. J. Atmos. Sol.-Terr. Phys. 69, 191–211 (2007). doi:10.1016/j.jastp.2006.08.011

    ADS  Google Scholar 

  • A.T.Y. Lui, D. Venkatesan, J.S. Murphree, Auroral bright spots on the dayside oval. J. Geophys. Res. 94, 5515–5522 (1989). doi:10.1029/JA094iA05p05515

    ADS  Google Scholar 

  • R.L. Lysak, Y. Song, Coupling of Kelvin–Helmholtz and current sheet instabilities to the ionosphere: a dynamic theory of auroral spirals. J. Geophys. Res. 101, 15411–15422 (1996). doi:10.1029/96JA00521

    ADS  Google Scholar 

  • X. Ma, A. Otto, P.A. Delamere, Interaction of magnetic reconnection and kelvin–Helmholtz modes for large magnetic shear: 1. Kelvin–Helmholtz trigger. J. Geophys. Res. (2014a). doi:10.1002/2013JA019224

    Google Scholar 

  • X. Ma, A. Otto, P.A. Delamere, Interaction of magnetic reconnection and Kelvin–Helmholtz modes for large magnetic shear: 2. reconnection trigger. J. Geophys. Res. (2014b). doi:10.1002/2013JA019225

    Google Scholar 

  • I.R. Mann, A.N. Wright, K.J. Mills, V.M. Nakariakov, Excitation of magnetospheric waveguide modes by magnetosheath flows. J. Geophys. Res. 104, 333–354 (1999). doi:10.1029/1998JA900026

    ADS  Google Scholar 

  • S. Markidis, G. Lapenta, L. Bettarini, M. Goldman, D. Newman, L. Andersson, Kinetic simulations of magnetic reconnection in presence of a background O+ population. J. Geophys. Res. 116, A1 (2011). doi:10.1029/2011JA016429

    Google Scholar 

  • A. Masters, N. Achilleos, C. Bertucci, M.K. Dougherty, S.J. Kanani, C.S. Arridge, H.J. McAndrews, A.J. Coates, Surface waves on Saturn’s dawn flank magnetopause driven by the Kelvin–Helmholtz instability. Planet. Space Sci. 57, 1769–1778 (2009). doi:10.1016/j.pss.2009.02.010

    ADS  Google Scholar 

  • A. Masters, N. Achilleos, M.G. Kivelson, N. Sergis, M.K. Dougherty, M.F. Thomsen, C.S. Arridge, S.M. Krimigis, H.J. McAndrews, S.J. Kanani, N. Krupp, A.J. Coates, Cassini observations of a Kelvin–Helmholtz vortex in Saturn’s outer magnetosphere. J. Geophys. Res. 115, 7225 (2010). doi:10.1029/2010JA015351

    Google Scholar 

  • A. Masters, N. Achilleos, J.C. Cutler, A.J. Coates, M.K. Dougherty, G.H. Jones, Surface waves on Saturn’s magnetopause. Planet. Space Sci. 65, 109–121 (2012). doi:10.1016/j.pss.2012.02.007

    ADS  Google Scholar 

  • R.A. Mathie, I.R. Mann, Observations of Pc5 field line resonance azimuthal phase speeds: a diagnostic of their excitation mechanism. J. Geophys. Res. 105, 10713–10728 (2000). doi:10.1029/1999JA000174

    ADS  Google Scholar 

  • Y. Matsumoto, M. Hoshino, Onset of turbulence induced by a Kelvin–Helmholtz vortex. Geophys. Res. Lett. 31, 2807 (2004). doi:10.1029/2003GL018195

    ADS  Google Scholar 

  • Y. Matsumoto, M. Hoshino, Turbulent mixing and transport of collisionless plasmas across a stratified velocity shear layer. J. Geophys. Res. 111, 5213 (2006). doi:10.1029/2004JA010988

    Google Scholar 

  • Y. Matsumoto, K. Seki, Formation of a broad plasma turbulent layer by forward and inverse energy cascades of the Kelvin–Helmholtz instability. J. Geophys. Res. 115, 10231 (2010). doi:10.1029/2009JA014637

    Google Scholar 

  • B.H. Mauk, D.C. Hamilton, T.W. Hill, G.B. Hospodarsky, R.E. Johnson, C. Paranicas, E. Roussos, C.T. Russell, D.E. Shemansky, E.C. Sittler, R.M. Thorne, Fundamental plasma processes in Saturn’s magnetosphere, in Saturn from Cassini–Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009), p. 281. doi:10.1007/978-1-4020-9217-6_11

    Google Scholar 

  • H. Mavromichalaki, X. Moussas, J.J. Quenby, J.F. Valdes-Galicia, E.J. Smith, Relatively stable, large-amplitude Alfvénic waves seen at 2.5 and 5.0 AU. Sol. Phys. 116, 377–390 (1988). doi:10.1007/BF00157485

    ADS  Google Scholar 

  • D.J. McComas, F. Bagenal, Reply to comment by S.W.H. Cowley et al. on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind”. Geophys. Res. Lett. 35, 10103 (2008). doi:10.1029/2008GL034351

    ADS  Google Scholar 

  • M.G. McHarg, J.V. Olson, Correlated optical and ULF magnetic observations of the winter cusp-boundary layer system. Geophys. Res. Lett. 19, 817–820 (1992). doi:10.1029/92GL00117

    ADS  Google Scholar 

  • V.G. Merkin, Effects of ionospheric O+ on the magnetopause boundary wave activity, in American Institute of Physics Conference Series, ed. by D. Vassiliadis, S.F. Fung, X. Shao, I.A. Daglis, J.D. Huba American Institute of Physics Conference Series, vol. 1320, 2011, pp. 208–212. doi:10.1063/1.3544326

    Google Scholar 

  • V.G. Merkin, J.G. Lyon, S.G. Claudepierre, Kelvin–Helmholtz instability of the magnetospheric boundary in a three-dimensional global MHD simulation during northward IMF conditions. J. Geophys. Res. 118, 5478–5496 (2013). doi:10.1002/jgra.50520

    Google Scholar 

  • A. Miura, Anomalous transport by magnetohydrodynamic Kelvin–Helmholtz instabilities in the solar wind-magnetosphere interaction. J. Geophys. Res. 89, 801–818 (1984)

    ADS  Google Scholar 

  • A. Miura, Simulation of Kelvin–Helmholtz instability at the magnetospheric boundary. J. Geophys. Res. 92, 3195–3206 (1987). doi:10.1029/JA092iA04p03195

    ADS  Google Scholar 

  • A. Miura, Kelvin–Helmholtz instability at the magnetospheric boundary—dependence on the magnetosheath sonic Mach number. J. Geophys. Res. 97, 10655 (1992). doi:10.1029/92JA00791

    ADS  Google Scholar 

  • A. Miura, Stabilization of the Kelvin–Helmholtz instability by the transverse magnetic field in the magnetosphere–ionosphere coupling system. Geophys. Res. Lett. 23, 761–764 (1996). doi:10.1029/96GL00598

    ADS  Google Scholar 

  • A. Miura, Compressible magnetohydrodynamic Kelvin–Helmholtz instability with vortex pairing in the two-dimensional transverse configuration. Phys. Plasmas 4, 2871–2885 (1997). doi:10.1063/1.872419

    ADS  MathSciNet  Google Scholar 

  • A. Miura, Nonideal magnetohydrodynamic Kelvin–Helmholtz instability driven by the shear in the ion diamagnetic drift velocity in a high-β plasma. Phys. Plasmas 8, 5291–5295 (2001). doi:10.1063/1.1421618

    ADS  Google Scholar 

  • A. Miura, P.L. Pritchett, Nonlocal stability analysis of the MHD Kelvin–Helmholtz instability in a compressible plasma. J. Geophys. Res. 87, 7431–7444 (1982). doi:10.1029/JA087iA09p07431

    ADS  Google Scholar 

  • H. Nakai, G. Ueno, Plasma structures of Kelvin–Helmholtz billows at the duskside flank of the magnetotail. J. Geophys. Res. 116, 8212 (2011). doi:10.1029/2010JA016286

    Google Scholar 

  • T.K.M. Nakamura, M. Fujimoto, Magnetic effects on the coalescence of Kelvin–Helmholtz vortices. Phys. Rev. Lett. 101(16), 165002 (2008). doi:10.1103/PhysRevLett.101.165002

    ADS  Google Scholar 

  • T.K.M. Nakamura, M. Fujimoto, A. Otto, Magnetic reconnection induced by weak Kelvin–Helmholtz instability and the formation of the low-latitude boundary layer. Geophys. Res. Lett. 33, 14106 (2006). doi:10.1029/2006GL026318

    ADS  Google Scholar 

  • T.K.M. Nakamura, H. Hasegawa, I. Shinohara, Kinetic effects on the Kelvin–Helmholtz instability in ion-to-magnetohydrodynamic scale transverse velocity shear layers: particle simulations. Phys. Plasmas 17(4), 042119 (2010). doi:10.1063/1.3385445

    ADS  Google Scholar 

  • T.K.M. Nakamura, H. Hasegawa, I. Shinohara, M. Fujimoto, Evolution of an MHD-scale Kelvin–Helmholtz vortex accompanied by magnetic reconnection: two-dimensional particle simulations. J. Geophys. Res. 116, 3227 (2011). doi:10.1029/2010JA016046

    Google Scholar 

  • T.K.M. Nakamura, W. Daughton, H. Karimabadi, S. Eriksson, Three-dimensional dynamics of vortex-induced reconnection and comparison with THEMIS observations. J. Geophys. Res. 118, 5742–5757 (2013). doi:10.1002/jgra.50547

    Google Scholar 

  • T.K. Nakamura, D. Hayashi, M. Fujimoto, I. Shinohara, Decay of MHD-scale Kelvin–Helmholtz vortices mediated by parasitic electron dynamics. Phys. Rev. Lett. 92(14), 145001 (2004). doi:10.1103/PhysRevLett.92.145001

    ADS  Google Scholar 

  • M. Neugebauer, B. Buti, A search for evidence of the evolution of rotational discontinuities in the solar wind from nonlinear Alfvén waves. J. Geophys. Res. 95, 13–20 (1990). doi:10.1029/JA095iA01p00013

    ADS  Google Scholar 

  • M.N. Nishino, M. Fujimoto, G. Ueno, T. Mukai, Y. Saito, Origin of temperature anisotropies in the cold plasma sheet: geotail observations around the Kelvin–Helmholtz vortices. Ann. Geophys. 25, 2069–2086 (2007). doi:10.5194/angeo-25-2069-2007

    ADS  Google Scholar 

  • K. Nykyri, Impact of MHD shock physics on magnetosheath asymmetry and Kelvin–Helmholtz instability. J. Geophys. Res. 118, 5068–5081 (2013). doi:10.1002/jgra.50499

    Google Scholar 

  • K. Nykyri, C. Foullon, First magnetic seismology of the CME reconnection outflow layer in the low corona with 2.5-D MHD simulations of the Kelvin–Helmholtz instability. J. Geophys. Res. 40, 4154–4159 (2013). doi:10.1002/grl.50807

    Google Scholar 

  • K. Nykyri, A. Otto, Plasma transport at the magnetospheric boundary due to reconnection in Kelvin–Helmholtz vortices. Geophys. Res. Lett. 28, 3565–3568 (2001). doi:10.1029/2001GL013239

    ADS  Google Scholar 

  • K. Nykyri, A. Otto, Influence of the Hall term on KH instability and reconnection inside KH vortices. Ann. Geophys. 22, 935–949 (2004). doi:10.5194/angeo-22-935-2004

    ADS  Google Scholar 

  • K. Nykyri, A. Otto, B. Lavraud, C. Mouikis, L.M. Kistler, A. Balogh, H. Rème, Cluster observations of reconnection due to the Kelvin–Helmholtz instability at the dawnside magnetospheric flank. Ann. Geophys. 24, 2619–2643 (2006)

    ADS  Google Scholar 

  • K.W. Ogilvie, R.J. Fitzenreiter, The Kelvin–Helmholtz instability at the magnetopause and inner boundary layer surface. J. Geophys. Res. 94, 15113–15123 (1989). doi:10.1029/JA094iA11p15113

    ADS  Google Scholar 

  • M. Øieroset, J. Raeder, T.D. Phan, S. Wing, J.P. McFadden, W. Li, M. Fujimoto, H. Rème, A. Balogh, Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003. Geophys. Res. Lett. 32, 12 (2005). doi:10.1029/2004GL021523

    Google Scholar 

  • A. Otto, D.H. Fairfield, Kelvin–Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations. J. Geophys. Res. 105, 21175 (2000). doi:10.1029/1999JA000312

    ADS  Google Scholar 

  • A. Otto, Mass transport at the magnetospheric flanks associated with three-dimensional Kelvin–Helmholtz modes, abstract #SM33B-0365, in AGU Fall Meeting Abstracts, 2006. AGU Fall Meeting Abstracts

    Google Scholar 

  • J. Paral, R. Rankin, Dawn-dusk asymmetry in the Kelvin–Helmholtz instability at Mercury. Nature Communications 4 (2013). doi:10.1038/ncomms2676

  • J.R. Peñano, G. Ganguli, Generation of ELF electromagnetic waves in the ionosphere by localized transverse dc electric fields: subcyclotron frequency regime. J. Geophys. Res. 105, 7441–7458 (2000). doi:10.1029/1999JA000303

    ADS  Google Scholar 

  • T. Penz, N.V. Erkaev, H.K. Biernat, H. Lammer, U.V. Amerstorfer, H. Gunell, E. Kallio, S. Barabash, S. Orsini, A. Milillo, W. Baumjohann, Ion loss on Mars caused by the Kelvin Helmholtz instability. Planet. Space Sci. 52, 1157–1167 (2004). doi:10.1016/j.pss.2004.06.001

    ADS  Google Scholar 

  • W.K. Peterson, L. Andersson, B.C. Callahan, H.L. Collin, J.D. Scudder, A.W. Yau, Solar-minimum quiet time ion energization and outflow in dynamic boundary related coordinates. J. Geophys. Res. 113, 7222 (2008). doi:10.1029/2008JA013059

    Google Scholar 

  • W.K. Peterson, L. Andersson, B. Callahan, S.R. Elkington, R.W. Winglee, J.D. Scudder, H.L. Collin, Geomagnetic activity dependence of O+ in transit from the ionosphere. J. Atmos. Sol.-Terr. Phys. 71, 1623–1629 (2009). doi:10.1016/j.jastp.2008.11.003

    ADS  Google Scholar 

  • T.D. Phan, D.E. Larson, R.P. Lin, J.P. McFadden, K.A. Anderson, C.W. Carlson, R.E. Ergun, S.M. Ashford, M.P. McCarthy, G.K. Parks, H. Rème, J.M. Bosqued, C. D’Uston, K.-P. Wenzel, T.R. Sanderson, A. Szabo, The subsolar magnetosheath and magnetopause for high solar wind ram pressure: WIND observations. Geophys. Res. Lett. 23, 1279–1282 (1996). doi:10.1029/96GL00845

    ADS  Google Scholar 

  • S.A. Pope, M.A. Balikhin, T.L. Zhang, A.O. Fedorov, M. Gedalin, S. Barabash, Giant vortices lead to ion escape from Venus and re-distribution of plasma in the ionosphere. J. Geophys. Res. 36, 7202 (2009). doi:10.1029/2008GL036977

    Google Scholar 

  • T.A. Potemra, R.E. Erlandson, H. Vo, D. Venkatesan, L.L. Cogger, Periodic auroral forms and geomagnetic field oscillations in the 1400 MLT region. J. Geophys. Res. 95, 5835–5844 (1990). doi:10.1029/JA095iA05p05835

    ADS  Google Scholar 

  • Z.-Y. Pu, M.G. Kivelson, Kelvin–Helmholtz instability at the magnetopause. I—Solution for compressible plasmas. II—Energy flux into the magnetosphere. J. Geophys. Res. 88, 841–861 (1983). doi:10.1029/JA088iA02p00841

    ADS  Google Scholar 

  • M. Rubin, K.C. Hansen, M.R. Combi, L.K.S. Daldorff, T.I. Gombosi, V.M. Tenishev, Kelvin–Helmholtz instabilities at the magnetic cavity boundary of comet 67P/Churyumov–Gerasimenko. J. Geophys. Res. 117, 6227 (2012). doi:10.1029/2011JA017300

    Google Scholar 

  • J. Semeter, C.J. Heinselman, J.P. Thayer, R.A. Doe, H.U. Frey, Ion upflow enhanced by drifting F-region plasma structure along the nightside polar cap boundary. Geophys. Res. Lett. 30, 2139 (2003)

    ADS  Google Scholar 

  • J. Seon, L.A. Frank, A.J. Lazarus, R.P. Lepping, Surface waves on the tailward flanks of the Earth’s magnetopause. J. Geophys. Res. 100, 11907 (1995)

    ADS  Google Scholar 

  • C.E. Seyler, A mathematical model of the structure and evolution of small-scale discrete auroral arcs. J. Geophys. Res. 95, 17199–17215 (1990). doi:10.1029/JA095iA10p17199

    ADS  Google Scholar 

  • M.A. Shay, M. Swisdak, Three-species collisionless reconnection: effect of O+ on magnetotail reconnection. Phys. Rev. Lett. 93(17), 175001 (2004). doi:10.1103/PhysRevLett.93.175001

    ADS  Google Scholar 

  • E.G. Shelley, H.L. Collin, Auroral ion acceleration and its relationship to ion composition, in Auroral Physics, ed. by C.-I. Meng, M.J. Rycroft, L.A. Frank, 1991, p. 129

    Google Scholar 

  • E.G. Shelley, R.G. Johnson, R.D. Sharp, Satellite observations of energetic heavy ions during a geomagnetic storm. J. Geophys. Res. 77, 6104–6110 (1972). doi:10.1029/JA077i031p06104

    ADS  Google Scholar 

  • J.A. Slavin, M.H. Acuña, B.J. Anderson, D.N. Baker, M. Benna, G. Gloeckler, R.E. Gold, G.C. Ho, R.M. Killen, H. Korth, S.M. Krimigis, R.L. McNutt, L.R. Nittler, J.M. Raines, D. Schriver, S.C. Solomon, R.D. Starr, P. Trávníček, T.H. Zurbuchen, Mercury’s magnetosphere after MESSENGER’s first flyby. Science 321, 85 (2008). doi:10.1126/science.1159040

    ADS  Google Scholar 

  • R. Smets, D. Delcourt, G. Chanteur, T.E. Moore, On the incidence of Kelvin–Helmholtz instability for mass exchange process at the Earth’s magnetopause. Ann. Geophys. 20, 757–769 (2002). doi:10.5194/angeo-20-757-2002

    ADS  Google Scholar 

  • R. Smets, G. Belmont, D. Delcourt, L. Rezeau, Diffusion at the Earth magnetopause: enhancement by Kelvin–Helmholtz instability. Ann. Geophys. 25, 271–282 (2007). doi:10.5194/angeo-25-271-2007

    ADS  Google Scholar 

  • T. Sundberg, S.A. Boardsen, J.A. Slavin, L.G. Blomberg, J.A. Cumnock, S.C. Solomon, B.J. Anderson, H. Korth, Reconstruction of propagating Kelvin–Helmholtz vortices at Mercury’s magnetopause. Planet. Space Sci. 59, 2051–2057 (2011). doi:10.1016/j.pss.2011.05.008

    ADS  Google Scholar 

  • T. Sundberg, S.A. Boardsen, J.A. Slavin, B.J. Anderson, H. Korth, T.H. Zurbuchen, J.M. Raines, S.C. Solomon, MESSENGER orbital observations of large-amplitude Kelvin–Helmholtz waves at Mercury’s magnetopause. J. Geophys. Res. 117, 4216 (2012). doi:10.1029/2011JA017268

    Google Scholar 

  • K. Takagi, C. Hashimoto, H. Hasegawa, M. Fujimoto, R. Tandokoro, Kelvin–Helmholtz instability in a magnetotail flank-like geometry: three-dimensional MHD simulations. J. Geophys. Res. 111, 8202 (2006). doi:10.1029/2006JA011631

    Google Scholar 

  • Y. Taroyan, R. Erdélyi, Resonant and Kelvin–Helmholtz instabilities on the magnetopause. Phys. Plasmas 9, 3121–3129 (2002). doi:10.1063/1.1481746

    ADS  Google Scholar 

  • M.G.G.T. Taylor, B. Lavraud, Observation of three distinct ion populations at the Kelvin–Helmholtz-unstable magnetopause. Ann. Geophys. 26, 1559–1566 (2008). doi:10.5194/angeo-26-1559-2008

    ADS  Google Scholar 

  • M.G.G.T. Taylor, B. Lavraud, C.P. Escoubet, S.E. Milan, K. Nykyri, M.W. Dunlop, J.A. Davies, R.H.W. Friedel, H. Frey, Y.V. Bogdanova, A. Åsnes, H. Laakso, P. Trávníček, A. Masson, H. Opgenoorth, C. Vallat, A.N. Fazakerley, A.D. Lahiff, C.J. Owen, F. Pitout, Z. Pu, C. Shen, Q.G. Zong, H. Rème, J. Scudder, T.L. Zhang, The plasma sheet and boundary layers under northward IMF: a multi-point and multi-instrument perspective. Adv. Space Res. 41, 1619–1629 (2008). doi:10.1016/j.asr.2007.10.013

    ADS  Google Scholar 

  • M.G.G.T. Taylor, H. Hasegawa, B. Lavraud, T. Phan, C.P. Escoubet, M.W. Dunlop, Y.V. Bogdanova, A.L. Borg, M. Volwerk, J. Berchem, O.D. Constantinescu, J.P. Eastwood, A. Masson, H. Laakso, J. Soucek, A.N. Fazakerley, H.U. Frey, E.V. Panov, C. Shen, J.K. Shi, D.G. Sibeck, Z.Y. Pu, J. Wang, J.A. Wild, Spatial distribution of rolled up Kelvin–Helmholtz vortices at Earth’s dayside and flank magnetopause. Ann. Geophys. 30, 1025–1035 (2012). doi:10.5194/angeo-30-1025-2012

    ADS  Google Scholar 

  • N. Terada, S. Machida, H. Shinagawa, Global hybrid simulation of the Kelvin–Helmholtz instability at the Venus ionopause. J. Geophys. Res. 107, 1471 (2002). doi:10.1029/2001JA009224

    Google Scholar 

  • V.A. Thomas, D. Winske, Kinetic simulation of the Kelvin–Helmholtz instability at the Venus ionopause. Geophys. Res. Lett. 18, 1943–1946 (1991). doi:10.1029/91GL02552

    ADS  Google Scholar 

  • V.A. Thomas, D. Winske, Kinetic simulations of the Kelvin–Helmholtz instability at the magnetopause. J. Geophys. Res. 98, 11425 (1993). doi:10.1029/93JA00604

    ADS  Google Scholar 

  • M.F. Thomsen, D.B. Reisenfeld, D.M. Delapp, R.L. Tokar, D.T. Young, F.J. Crary, E.C. Sittler, M.A. McGraw, J.D. Williams, Survey of ion plasma parameters in Saturn’s magnetosphere. J. Geophys. Res. 115, 10220 (2010). doi:10.1029/2010JA015267

    Google Scholar 

  • H. Turkakin, R. Rankin, I.R. Mann, Primary and secondary compressible Kelvin–Helmholtz surface wave instabilities on the Earth’s magnetopause. Journal of Geophysical Research: Space Physics, 4161–4175 (2013). doi:10.1002/jgra.50394. http://dx.doi.org/10.1002/jgra.50394

  • J.S. Wagner, R.D. Sydora, T. Tajima, T. Hallinan, L.C. Lee, S.-I. Akasofu, Small-scale auroral Arc deformations. J. Geophys. Res. 88, 8013–8019 (1983). doi:10.1029/JA088iA10p08013

    ADS  Google Scholar 

  • R.J. Walker, K. Fukazawa, T. Ogino, D. Morozoff, A simulation study of Kelvin–Helmholtz waves at Saturn’s magnetopause. J. Geophys. Res. 116, 3203 (2011). doi:10.1029/2010JA015905

    Google Scholar 

  • C. Wang, J.W. Belcher, Numerical investigation of hydrodynamic instabilities of the heliopause. J. Geophys. Res. 103, 247 (1998). doi:10.1029/97JA02773

    ADS  Google Scholar 

  • C.-P. Wang, L.R. Lyons, T. Nagai, J.M. Weygand, A.T.Y. Lui, Evolution of plasma sheet particle content under different interplanetary magnetic field conditions. J. Geophys. Res. 115, 6210 (2010). doi:10.1029/2009JA015028

    Google Scholar 

  • C.Q. Wei, L.C. Lee, Coupling of magnetopause-boundary layer to the polar ionosphere. J. Geophys. Res. 98, 5707–5725 (1993). doi:10.1029/92JA02232

    ADS  Google Scholar 

  • M. Wilber, R.M. Winglee, Dawn-dusk asymmetries in the low-latitude boundary layer arising from the Kelvin–Helmholtz instability: a particle simulation. J. Geophys. Res. 100, 1883–1898 (1995). doi:10.1029/94JA02488

    ADS  Google Scholar 

  • R.J. Wilson, P.A. Delamere, F. Bagenal, A. Masters, Kelvin–Helmholtz instability at Saturn’s magnetopause: Cassini ion data analysis. J. Geophys. Res. 117, 3212 (2012). doi:10.1029/2011JA016723

    Google Scholar 

  • C.D. Winant, F.K. Browand, Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237–255 (1974). doi:10.1017/S0022112074001121

    ADS  Google Scholar 

  • S. Wing, J.R. Johnson, Substorm entropies. J. Geophys. Res. 114, A9 (2009). doi:10.1029/2008JA013989

    Google Scholar 

  • S. Wing, J.R. Johnson, Introduction to special section on entropy properties and constraints related to space plasma transport. J. Geophys. Res. 115, A1 (2010). doi:10.1029/2009JA014911

    Google Scholar 

  • S. Wing, J.R. Johnson, M. Fujimoto, Timescale for the formation of the cold-dense plasma sheet: a case study. Geophys. Res. Lett. 33, 23106 (2006). doi:10.1029/2006GL027110

    ADS  Google Scholar 

  • S. Wing, J.R. Johnson, P.T. Newell, C.-I. Meng, Dawn-dusk asymmetries, ion spectra, and sources in the northward interplanetary magnetic field plasma sheet. J. Geophys. Res. 110, 8205 (2005). doi:10.1029/2005JA011086

    Google Scholar 

  • S. Wing, J.W. Gjerloev, J.R. Johnson, R.A. Hoffman, Substorm plasma sheet ion pressure profiles. Geophys. Res. Lett. 34, 16110 (2007). doi:10.1029/2007GL030453

    ADS  Google Scholar 

  • S. Wing, M. Gkioulidou, J.R. Johnson, P.T. Newell, C.-P. Wang, Auroral particle precipitation characterized by the substorm cycle. J. Geophys. Res. 118, 1022–1039 (2013). doi:10.1002/jgra.50160

    Google Scholar 

  • S. Wing, J.R. Johnson, C.C. Chaston, M. Echim, C.P. Escoubet, B. Lavraud, J. Lemaire, C. Lemon, J. Raeder, K. Nykyri, A. Otto, C.-P. Wang, Review of solar wind entry and transport within the plasma sheet. Space Science Reviews (2014). Submitted

  • K. Wu, C.E. Seyler, Instability of inertial Alfvén waves in transverse sheared flow. J. Geophys. Res. 108, 1236 (2003). doi:10.1029/2002JA009631

    Google Scholar 

  • T. Yamamoto, A linear analysis of the hybrid Kelvin–Helmholtz/Rayleigh–Taylor instability in an electrostatic magnetosphere-ionosphere coupling system. J. Geophys. Res. 113, 6206 (2008). doi:10.1029/2007JA012850

    Google Scholar 

  • A.W. Yau, M. Andre, Sources of ion outflow in the high latitude ionosphere. Space Sci. Rev. 80, 1–25 (1997)

    ADS  Google Scholar 

  • A.W. Yau, B.A. Whalen, W.K. Peterson, E.G. Shelley, Distribution of upflowing ionospheric ions in the high-altitude polar cap and auroral ionosphere. J. Geophys. Res. 89, 5507–5522 (1984)

    ADS  Google Scholar 

  • Y. Yu, A.J. Ridley, Exploring the influence of ionospheric O+ outflow on magnetospheric dynamics: the effect of outflow intensity. J. Geophys. Res. 118, 5522–5531 (2013). doi:10.1002/jgra.50528

    Google Scholar 

Download references

Acknowledgements

Simon Wing gratefully acknowledges support from NSF Grants ATM-0802715, and AGS-1058456 and NASA Grant NNX13AE12G. Jay Johnson was funded by NASA grants (NNH09AM53I, NNH09AK63I, and NNH11AR07I), NSF Grants ATM0902730 and AGS-1203299, and DOE contract DE-AC02-09CH11466. We acknowledge the support of the International Space Science Institute (ISSI) International Teams Program, which made it possible for a small team of scientists to convene and have in-depth, informal discussions on topics relevant to this paper. Last but not least, we also thank NSF GEM for supporting Plasma entry and transport into and within the magnetotail (PET) Focus Group, which provided a forum for fruitful discussions of the topics covered in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay R. Johnson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, J.R., Wing, S. & Delamere, P.A. Kelvin Helmholtz Instability in Planetary Magnetospheres. Space Sci Rev 184, 1–31 (2014). https://doi.org/10.1007/s11214-014-0085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0085-z

Keywords

Navigation